Атмосферний тиск на різних висотах
Швидкості руху молекул, що входять до складу повітря, неоднакові. Деякі молекули мають швидкість більшу, ніж переважна більшість. Тому, вони можуть підніматися над Землею на значну висоту. Відносна кількість таких молекул з висотою зменшується. Відповідно зменшується й утворювальний ними тиск.
Залежність атмосферного тиску від висоти над поверхнею Землі вперше виявив Блез Паскаль. Він з учнями піднявся на гору То-де-Дом ( Франція ) і виявив, що на вершині гори стовп ртуті на 7,5 см коротше, ніж біля її підніжжя.
показують,що атмосферний тиск у місцевостях,які лежать на рівні моря,середньому дорівнює 760 мм.рт.ст.
Атмосферний тиск,що дорівнює тиску стовпа ртуті заввишки 760 мм при температурі 00С,називають нормальним атмосферним тиском.
Нормальний атмосферний тиск дорівнює 101 300 Па = 1013 гПа.
Чим більша висота над рівнем моря,тим менший тиск. При невеликих підйомах у середньому на кожних 10,5 м підйому тиск зменшується на 1 мм.рт.ст. (або на 1,33 гПа ).Знаючи залежність тиску від висоти, можна за зміною показів барометра визначити висоту над рівнем моря.
ответ: a=28/15 м/с².
Объяснение:
Будем считать нить нерастяжимой и невесомой. Тогда ускорения обоих тел равны: a1=a2=a. Пусть T1 и T2 - силы натяжения нити, действующие соответственно на тела с массами m1 и m2. Так как по условию масса болка m≠0, то T1≠T2. На тело с массой m1 действует сила тяжести m1*g и противоположно направленная ей сила T1, на тело массой m2 - сила T2 и противоположно направленная ей сила трения μ*m2*g, где g - ускорение свободного падения. По второму закону Ньютона,
m1*g-T1=m1*a
T2-μ*m2*g=m2*a
Так как по условию масса блока m≠0, то к написанным уравнениям нужно добавить уравнение вращательного движения для блока. По третьему закону Ньютона, со стороны тела с массой m1 на нить действует сила -T1, равная и противоположно направленная силе T1. А со стороны тела с массой m2 на нить действует сила -T2, равная и противоположно направленная силе T2. Момент силы -T1 относительно оси блока M1=-T1*R, момент силы -T2 относительно оси блока M2=-T2*R, где R - радиус блока. И так как по условию трением в оси блока пренебрегаем, то согласно уравнению динамики вращательного движения для блока M1-M2=J*ε, где J и ε -момент инерции и угловое ускорение блока. Так как по условию блок является однородным диском, то J=m*R²/2. Таким образом, получены 3 уравнения:
m1*g-T1=m1*a
T2-μ*m2*g=m2*a
T2*R-T1*R=m*R²*ε/2
Так как ε=a/R, то третье уравнение можно записать в виде T2*R-T1*R=m*a*R/2. И тогда, после сокращения третьего уравнения на R, окончательно получаем систему из 3-х уравнений с 3-мя неизвестными:
m1*g-T1=m1*a
T2-μ*m2*g=m2*a
T2-T1=m*a/2.
Полагая g=10 м/с² и подставляя известные значения m, m1, m2 и μ, приходим к системе:
10-T1=a
T2-3=3*a
T2-T1=0,25*a
Решая её, находим a=28/15 м/с².
Плотность водяного пара выразим через уравнение идеального газа:
PV=нюRT, где ню=m/Mr
P=mRT/VMr,т.к. m/v - плотность, то формула примет следующий вид:
P=pRT/Mr
выразим плотность:
p=PMr/RT.
Подставим в начальную формулу
фи=PMr/RTP0. По условию задачи повышается температура, значит относительная влажность воздуха уменьшиться (ответ 2)
Точка расы не зависит от температуры, поэтому (ответ 3)