Нужно обратиться к таблице удельного сопротивления. Сопротивление нихрома ≈ 1 Сопротивление свинца ≈ 0.2 Сопротивление считается по формуле: Сопротивление=Уд. сопротивление* длина проводника/площадь сечения. Так как и длина и сечение одинаковы сравниваем только уд. сопротивления: 1>0.2 в 5 раз. ответ: в 5 раз
F1 = G*m*M / (R1 ^ 2) F2 = G*m*M / (R2 ^ 2) , где G - гравитационная постоянная, m - масса тела, на которое действует сила тяжести Земли, M - масса Земли, R1 - расстояние от центра Земли до поверхности, то есть радиус Земли, R2 - расстояние от центра земли до точки, на которой сила тяжести F2 = 1/4 F1.
Поделив уравнения одно на другое, получим F1/F2 = (R2 ^ 2) / (R1 ^ 2) F1 = 4*F2 => R2^2 / R1^2 = 4 или R2 = ± 2*R1 ответ: на высоте равной R1 — радиус Земли — сила тяжести будет в 4 раза меньше, чем на поверхности. (в решении нашли расстояние от центра, оно равно двум радиусам. А от поверхности это будет уже один радиус Земли)
Поднимаясь по желобу на высоту h шарик приобретает потенциальную энергию W = mgh.
При малых смещениях можно считать, что амплитуда колебаний по дуге желоба l равна проекции этой дуги на горизонталь X0. Из прямоугольного треугольника, образованного радиусом желоба R, амплитуды горизонтального смещения X0 и проекции крайнего положения шарика на вертикаль (R-h) следует: X0^2 + (R-h)^2 = R^2 Отсюда получим: X0^2 = 2*R*h - h^2 Учитывая, что при малых колебаниях h^2 << 2*R*h X0^2 = 2*R*h
Таким образом, получаем выражение для h через амплитуду X0 при малых отклонениях от положения равновесия: h = X0^2/2R
Потенциальная энергия, максимальная при крайнем положении шарика обретает вид: W = m*g*X0^2/2R
Теперь получим значение максимальной кинетической энергии шарика (при прохождении положения равновесия). Она равна: T = m*V0^2/2 + I*Omega^2/2 поскольку, коль шарик катится по жёлобу без проскалзывания, мы должны, помимо кин энергии поступательного движения шарика массы m, учитывать ещё и энергию вращения шарика с моментом инерции I и угловой скоростью вращения шарика вокруг его собственной оси Omega.
При этом максимальная линейная скорость шарика V0 = Omega*r, где r = радиус шарика => Omega = V0/r
T = m*V0^2/2 + I*(V0/r)^2/2
Если шарик совершает гармонические колебания по закону x(t) = X0*Sin(omega*t) то его скорость должна меняться по закону v(t) = x'(t) = omega*X0*Cos(omega*t)
Таким образом, максимальная линейная скорость шарика (амплитуда скорости) равна V0 = omega*X0, где omega - циклическая частота колебаний шарика.
Выражение для максимальной кинетической энергии шарика принимает вид: T = m*(omega*X0)^2/2 + I*(omega*X0)^2/(2r^2).
Поскольку момент инерции шарика радиуса r и массы m равен I = (2/5)mr^2, то
T = m*(omega*X0)^2/2 + (2/5)mr^2*(omega*X0)^2/(2r^2) = (7/10)m*(omega*X0)^2
В колебательной системе максимальное значение потенциальной энергии W равно максимальной величине кинетической энергии T.
(7/10)m*(omega*X0)^2 = m*g*X0^2/2R отсюда, сокращая в обеих частях равенства m и X0 получаем:
(7/5)*omega^2 = g/R
и окончательно omega^2 = (5/7)*(g/R) и omega = sqrt(5g/7R).
Частота такого "маятника" niu = omega/2Pi niu = sqrt(5g/7R)/2Pi
Сопротивление нихрома ≈ 1
Сопротивление свинца ≈ 0.2
Сопротивление считается по формуле:
Сопротивление=Уд. сопротивление* длина проводника/площадь сечения.
Так как и длина и сечение одинаковы сравниваем только уд. сопротивления:
1>0.2 в 5 раз.
ответ: в 5 раз