1. Техническое обслуживание гидравлического пресса a. Важно знать, чтобы пользователь содержал гидравлический пресс в чистой рабочей обстановке. b. Строго следить за рекомендуемым интервалом замены масла. c. Регулярная проверка масла в соединениях без утечки. d. Убедиться в хорошем основании без вибрации. Вышеуказанные пункты являются результатом опыта, пользователь должен использовать согласно рекомендациям.
Уравнение движения первого тела x1=-v0t+0.5at^2; a=g*sin(b), b- угол наклона плоскости. для второго тела x2=v0t+0.5at^2; Скорость первого тела равна: v1=x1'=-v0+at1; В момент остановки она равна нулю: v0=at1; Отсюда t1=v0/a; Находим расстояния, пройденные телами за это время t1; x1=-v0*v0/a+0.5a*v0^2/a^2; x1=-v0^2/a+0.5v0^2/a; x1=-0.5v0^2/a; (нас интересует отношение расстояний, поэтому берём модуль числа) x1=0.5v0^2/a;
x2=v0*v0/a+0.5a*v0^2/a^2; x2=1.5v0^2/a;
x2/x1=(1.5v0^2/a)/(0.5v0^2/a); x2/x1=3. Второе тело путь в три раза больше, чем первое.
В жидкости молекулы находятся в непрерывном движении, причём движутся они с разными скоростями, как по величине, так и по направлению. Молекулы испытывают силы притяжения, и отталкивания тоже, но именно из-за сил притяжения они не могут разлететься, как в газе, и поэтому "кусок жидкости" долго сохраняется именно как нечто единое. Но всё-такие есть очень энергичные молекулы, которые оказались у поверхности жидкости, у которых скорость направлена из жидкости и достаточно велика, чтобы энергии хватило на преодоление притяжения остальных молекул. Вот эти молекулы и вылетают из жидкости, приводя к испарению.
Кстати вот почему жидкость, испаряясь, остывает: её покидают самые энергичные молекулы, а тормознутые (холодные) остаются. А теплота испарения связана с тем, что испаряющимся молекулам приходится преодолевать притяжение соседей, совершая при этом работу.