Принцип работы такой: с некоей силой F1 мы давим на маленькую площадь, под ней образуется давление, которое давит на большую площадь и за счёт этого даёт большую силу на выходе. Давление есть отнощение силы к площади: P=F/S Раз у нас цилиндр, его сечение круговое и площадь сечения равна: S=П*R^2 = П*(D/2)^2 = П * D^2 / 4 Отнощение площадей будет: S1 / S2 = (П * D1^2 / 4) / (П * D2^2 / 4) = D1^2 / D2^2 = 50*50 / 4*4 = 2500 / 16 = 156,25 Давление силы F1 в большом цилиндре будет равно давлению в малом цилиндре с силой F2: P = F1/S1 = F2/S2 Отсюда F1/F2 = S1/S2 = 156,25 раз
Если равноплечие весы будут находиться в равновесии, значит на левую и правую чаши весов действуют одинаковые по величине силы, то есть верно следующее равенство (смотрите схему): mg — {f_{а1}} = mg — {f_{а2}} распишем силы архимеда f_{а1} и f_{а2} в левой и правой части равенства по известной формуле: mg — {\rho _в}g{v_1} = mg — {\rho _в}g{v_2} m — {\rho _в}{v_1} = m — {\rho _в}{v_2} неизвестный объем v_2 можно выразить из массы m и плотности \rho по формуле: {v_2} = \frac{m}{\rho } m — {\rho _в}{v_1} = m — {\rho _в}\frac{m}{\rho } m — {\rho _в}{v_1} = \frac{{m\left( {\rho — {\rho _в}} \right)}}{\rho } выразим неизвестную массу гирь m: m = \frac{{\rho \left( {m — {\rho _в}{v_1}} \right)}}{{\rho — {\rho _в}}} переведем плотности и объем тела в систему си: 1\; г/см^3 = 1000\; кг/м^3 7\; г/см^3 = 7000\; кг/м^3 100\; см^3 = {10^{ — 4}}\; м^3 посчитаем численный ответ к : m = \frac{{7000 \cdot \left( {1 — 1000 \cdot {{10}^{ — 4}}} \right)}}{{7000 — 1000}} = 1,05\; кг ответ 1,05кг
a = 8м/с²
v = v₀+at
v = 20+8t