Масса четырехколесного прицепа с грузом 4 тонн определите давление оказываемое прицепом на дорогу если площадь соприкосновения каждого колеса 100 сантиметра в квадрате
M(a)g/S=M (p) g/S тут M(a) и M(p) - массы брусков соотв-но алюминиевого и парафинового. M(a) = V(a)*P(a) тут V(a) - объём алюминия, а P(a) его плотность, дальше всё точно также V(a) = h(a)*S V(p) = h(p)*S
M(p) = h(p)*S*P(p) M(a) = h(a)*S*P(a)
подставляем в уравнение давления и заменяем известные величины числами из условия. h(a)*P(a) = h(p)*P(p) h(a) = 4см = 0.04 м по условию P(a) = 2700кг/м:3 P(p) = 900кг/м^3 это плотности, их всегда дают в условии, но вы почему - то жадничаете. дальше получим, что h(p) = (h(a)*P(a))/P(p) = = 0.12 м
P.S. моя жизнь слишком коротка чтобы решать эти задачи для даунов.
ответ: высота парафинового бруска равна 0.12 метрам или 12 сантиметрам.
Пусть и ослик и автомобиль движутся равномерно (трения нет, дорога прямая и ровная) Тогда нам понадобиться только одна формула для равмномерного движения по прямой: S=v*t, где S - путь, v - скорость, t - время.
1) Пусть ослик побежал назад, тогда они встретятся в начале моста: ослик: 3*L/8=Vос*t, где Vос - искомая скорость ослика. автомобиль: x=V*t, где x - расстояние, которое проехал автомобиль до моста (мы его не знаем) Из одного уравнения выразим время и подставим в другое: 3*L/8=Vос*x/V - (уравнение 1) L - длина моста 2) Пусть теперь ослик бежит вперед: ослик: 5*L/8=Vос*t2, автомобиль: x2=V*t2, Подставляем теперь t2: 5*L/8=Vос*x2/V - (уравнение 2) 3) Вычтем из второго уравнения первое: 2*L/8=Vос*(x2-x)/V Путь автомобиля можно представить так x2=x+L, значит x2-x=L Подставляем: L/4=Vос*L/V, теперь L сокращается, окончательно получаем: Vос=V/4 ответ: Vос=V/4
p= 4000кг/10^-2= 400000Па= 400КПа