осмотрим, как влияет э.д.с. самоиндукции на процесс установления тока в цепи, содержащей индуктивность.
в цепи, представленной на схеме 10.10, течёт ток. отключим источник e, разомкнув в момент времени t = 0 ключ к. ток в катушке начинает убывать, но при этом возникает э.д.с. самоиндукции, поддерживающая убывающий ток.
рис. 10.10.
запишем для новой схемы 10.10.b уравнение правила напряжений кирхгофа:
.
разделяем переменные и интегрируем:
пропотенцировав последнее уравнение, получим:
.
постоянную интегрирования найдём, воспользовавшись начальным условием: в момент отключения источника t = 0, ток в катушке i(0) = i0.
отсюда следует, что c = i0 и поэтому закон изменения тока в цепи приобретает вид:
. (10.7)
график этой зависимости на рис. 10.11. оказывается, ток в цепи, после выключения источника, будет убывать по экспоненциальному закону и станет равным нулю только спустя t = ¥.
рис. 10.11.
вы и сами теперь легко покажете, что при включении источника (после замыкания ключа к) ток будет нарастать тоже по экспоненциальному закону, асимптотически приближаясь к значению i0 (см. рис. 10.
. (10.8)
но вернёмся к первоначальной размыкания цепи.
мы отключили в цепи источник питания (разомкнули ключ к), но ток — теперь в цепи 10.8.b — продолжает течь. где черпается энергия, обеспечивающая бесконечное течение этого убывающего тока?
ток поддерживается электродвижущей силой самоиндукции e = . за время dt убывающий ток совершит работу:
da = eси×i×dt = –lidi.
ток будет убывать от начального значения i0 до нуля. проинтегрировав последнее выражение в этих пределах, получим полную работу убывающего тока:
. (10.9)
совершение этой работы сопровождается двумя процессами: исчезновением тока в цепи и исчезновением магнитного поля катушки индуктивности.
с чем же связана была выделившаяся энергия? где она была локализована? располагалась ли она в проводниках и связана ли она с направленным движением носителей заряда? или она локализована в объёме соленоида, в его магнитном поле?
опыт даёт ответ на эти вопросы: энергия электрического тока связана с его магнитным полем и распределена в пространстве, занятом этим полем.
несколько изменим выражение (10.9), учтя, что для длинного соленоида справедливы следующие утверждения:
l = m0n2sl (10.5) — индуктивность;
b0 = m0ni0 (9.17) — поле соленоида.
эти выражения используем в (10.9) и получим новое уравнение для полной работы экстратока размыкания, или — начального запаса энергии магнитного поля:
. (10.10)
здесь v = s×l — объём соленоида (магнитного
энергия катушки с током пропорциональна квадрату вектора магнитной индукции.
разделив эту энергию на объём магнитного поля, получим среднюю плотность энергии:
[]. (10.11)
это выражение похоже на выражение плотности энергии электростатического поля:
.
обратите внимание: в сходных уравнениях, если e0 — в числителе, m0 — непременно в знаменателе.
зная плотность энергии в каждой точке магнитного поля, мы теперь легко найдём энергию, в любом объёме v поля.
локальная плотность энергии в заданной точке поля:
.
значит, dw = wdv и энергия в объёме v равна:
.
онкое кольцо массой 15 г и радиусом 12 см несет заряд, равномерно распределенный с линейной плотностью 10 нКл/м. Кольцо равномерно вращается с частотой 8 с-1 относительно оси, перпендикулярной плоскости кольца и проходящей через ее центр. Определить отношение магнитного момента кругового тока, создаваемого кольцом, к его моменту импульса. [251 нКл/кг]
14.2. По проводу, согнутому в виде квадрата со стороной, равной 60 см, течет постоянный ток 3 А. Определить индукцию магнитного поля в центре квадрата. [5,66 мкТл]
14.3. По двум бесконечно длинным прямым параллельным проводникам, расстояние между которыми равно 25 см, текут токи 20 и 30 А в противоположных направлениях. Определить магнитную индукцию В вточке, удаленной на г1 =30 см от первого и г2=40 см от второго проводника. [9,5 мкТл]
14.4. Определить магнитную индукцию на оси тонкого проволочного кольца радиусом 10 см, по которому течет ток 10 А, в точке, расположенной на расстоянии 15 см от центра кольца. [10,7 мкТл]
14.5. Два бесконечных прямолинейных параллельных проводника с одинаковыми токами, текущими в одном направлении, находятся друг от друга на расстоянии R. Чтобы их раздвинуть до расстояния 3R, на каждый сантиметр длины проводника затрачивается работа А=220 нДж. Определить силу тока в проводниках. [10 А]
14.6. Определить напряженность поля, создаваемого прямолинейно равномерно движущимся со скоростью 500 км/с электроном в точке, находящейся от него на расстоянии 20 нм и лежащей на перпендикуляре к скорости, проходящем через мгновенное положение электрона. [15,9 А/м]
14.7. Протон, ускоренный разностью потенциалов 0,5 кВ, влетая в однородное магнитное поле с индукцией 0,1 Тл, движется по окружности. Определить радиус этой окружности. [3,23 см]
14.8. Определить, при какой скорости пучок заряженных частиц, проходя перпендикулярно область, в которой созданы однородные поперечные электрическое и магнитное поля с E = 10 кВ/м и В = 0,2Тл, не отклоняется. [50 км/с]
14.9. Циклотрон ускоряет протоны до энергии 10 МэВ. Определить радиус дуантов циклотрона при индукции магнитного поля 1 Тл. [>47 см]
14.10. Через сечение медной пластинки толщиной 0,1 мм пропускается ток 5 А. Пластинка помещается в однородное магнитное поле с индукцией 0,5 Тл, перпендикулярное ребру пластинки и направлению тока. Считая концентрацию электронов проводимости равной концентрации атомов, определить возникающую в пластине поперечную (холловскую) разность потенциалов. Плотность меди 8,93 г/см3. [1,85 мкВ]
14.11. По прямому бесконечно длинному проводнику течет ток 15 А. Определить, пользуясь теоремой о циркуляции вектора В, магнитную индукцию В вточке, расположенной на расстоянии 15 см от проводника. [20 мкТл]
14.12. Определить, пользуясь теоремой о циркуляции вектора В, индукцию и напряженность магнитного поля на оси тороида без сердечника, по обмотке которого, содержащей 300 витков, протекает ток 1 А. Внешний диаметр тороида равен 60 см, внутренний — 40 см. [0.24 мТл; 191 А/м]
14.13. Поток магнитной индукции сквозь площадь поперечного сечения соленоида (без сердечника) Ф = 5 мкВб. Длина соленоида l = 25 см. Определить магнитный момент рт этого соленоида. [1 А×м2]
14.14. Круглая рамка с током площадью 20 см2 закреплена параллельно магнитному полю (5 = 0,2 Тл), и на нее действует вращающий момент 0,6 мН'м. Рамку освободили, после поворота на 90° ее угловая скорость стала 20 с-1. Определить: 1) силу тока, текущего в рамке; 2) момент инерции рамки относительно ее диаметра. [1) 1,5 А; 2) 3×10 -6 кг м2]
Объяснение: