Физика тесно связана с техникой. До середины столетия связь между физикой и техникой носила такой характер, когда техника шла впереди. Создавались технические устройства, возникали технические проблемы, которые затем вызывали к жизни соответствующие физические исследования. VIII век - создана паровая машина. Начало ХIХ века - встал вопрос об увеличении кпд тепловых машин. Сади Карно решил эту проблему, и его работа стала фундаментом для возникновения общего учения о передаче и превращении энергии - термодинамики. Затем крупные физические открытия стали приводить к созданию новых отраслей техники. Академик С.И. Вавилов (1891 - 1955), советский физик и общественный деятель, сказал, что теснейшая связь физики с другими отраслями естествознания привела к тому, что физика глубочайшими корнями вросла в химию, геологию, астрономию, биологию и др. Возникли новые смежные дисциплины: астрофизика, биофизика, геофизика, физическая химия и т.д. Физика является основой многих технических наук: теоретической механики, сопромата, электротехники. Физика явилась фундаментом, на котором выросли такие области техники как – электро - и радиотехника, электронная и вычислительная техника, приборостроение. Техника стимулирует развитие физики и наоборот. Могучая ускорительная техника развитию исследований по физике атомного ядра и элементарных частиц. Содружество физики и техники приводит к сокращению временных интервалов между научными открытиями и их технической реализацией. фотография - 110 лет радио - 50 лет транзистор - 15 лет лазер - 7 лет Физика тесно связана с математикой. Без математического описания невозможен точный инженерный расчет и развитие физических теорий. Физика - база для создания новых отраслей техники, или научная база, на которой должна основываться общетехническая подготовка специалистов. Физику подразделяют на классическую и квантовую. Начало классической физики было положено И. Ньютоном, сформулировавшим основные законы механики, а завершено развитие классической физики созданием в 1905 г. А. Эйнштейном специальной теории относительности и учитывающей требования этой теории релятивистской механики.
Твердые тела передают оказываемое на них давление в направлении действия силы. В отличие от твердых тел, жидкости и газы передают производимое на них давление по всем направлениям одинаково. Это объясняется тем, что отдельные частицы и слои жидкости и газа могут свободно перемещаться по всем направлениям. Свойство жидкости и газа передавать производимое на них давление одинаково во все стороны наглядно демонстрируется в опыте Паскаля. При в движении поршня в трубку вода выталкивается из всех отверстий одинаково, а не только из тех, которые расположены в направлении силы давления поршня. Если шар Паскаля вместо воды заполнить дымом, результат будет тот же.
Построение и работа модели атома. Есть желающие посмотреть строение и работу атома, по крайней мере, тс какого-нибудь наглядного пособия. Попыток желающих построить механическую модель атома в качестве наглядного научного пособия много, но удовлетворённых существующими моделями, практически нет. Есть возможность построить механическую модель атома, соответствующую известным естественным законам природы. Дело в том, что конструктору надо знать механические теории взаимосвязи вращающихся деталей (передачи вращения), представлять и уметь сделать необходимую деталь, (некоторые детали можно приобрести производственного изготовления). Изучить научные представления о строении и взаимодействия ядра атома и электронов и найти недостатки, ошибки и заблуждения в современных теориях об атомной механике. (Сейчас говорят ─ в квантовой механике). Когда конструктор разберётся в этих вопросах, может представить, как должна выглядеть будущая модель. Предварительно создавать черновые рисунки, критически в них присматриваться и готовить материал изготов-ления, то есть что и из чего делать. Возможны и ошибки, ни их надо свое-временно устранять. Не только можно, а нужно и целесообразно обсуждать и советоваться по любому вопросу с друзьями и специалистами. Такова уж конструкторская методика. Моделирование в любой научной области осуществляется в основном теоретически и, во всяком случае, расширяет кругозор теоретика в представлении реально существующего объекта. И вместе с этим развивает методику его реализации. Помнится афоризм: «от модели к планеру, от планера к самолету», и можно его продолжить, ─ «к ракете и космосу». Моделирование атома началось Бором и Резерфордом. Первые модели движения электрона изображались схематическими круговыми орбитами. Затем по предположениям Бора и Резерфорда было предложено изображать траектории движения электронов эллипсообразными, подобными планетарным орбитам. Однако законы Кеплера или знакомы поверхностно, или пренебрегались. По соображениям Резерфорда причиной движения электронов Ре-зерфордом было принято взаимодействие электрических зарядов в атоме. Гравитационное взаимодействие ядер и электронов в атоме до сих пор не признается по причине, якобы, в квантовой механике законы классической механики неприменимы. Это ошибочное предположение. Реально классическая механика и квантовая различны только в масштабах субъективного исчисления. Вернёмся к моделированию. В предлагаемой конструкции механической модели «электрон» обращается вокруг ядра атома по эллипсообразной орбите. Следуя по орбите на нисходящей её ветви «электрон» для реальной видимости электрическими лампочками излучает свет (фотоны). С переходом на восходящую ветвь орбиты лампочки выключены автоматически. Это обозначает процесс электронного поглощения. С переходом на нисходящую ветвь орбиты открывается процесс электронного излучения. (Согласно теории Шредингера). Если бы в природе плоскость орбиты была постоянна и в неизменном положении, то и модель показала бы одностороннее излучение. Но в атоме электрон кроме ядра атома еще обращается и вокруг трех пространственных осей X, Y и Z и излучение практически осуществляется во всех радиальных направлениях с кратковременными разрывами, демонстрирующими квантово-волновое излучение. Модель может наглядно показать остановку движения «электрона» в любой точке «атомного» пространства и для наглядности изменять скорость движения электрона и положения его в «атомном» пространстве. Весь механизм модели приводится в действие вручную. И в основе теории атомной механики применяется теория гравитационного взаимодействия материального мира. В модели полюсные точки эллипсообразной орбиты (наиболее приближенной и наиболее удаленной относительно ядра атома) описывают сферические формы ─ границы местонахождения «электрона» в процессе его движения по орбите. Вот эту ограниченную область атомного пространства и называют орбиталью. И каждый электрон в природном атоме образует орбиталь. Никаких функций у неё нет. Это чисто геометрическое понятие. А предположение взаимодействия электронов и ядра атома посредством взаимодействия электрических зарядов ─ заблуждение. Электрическое явление существует за пределами за пределами атомного пространства в квантово-волновых образованиях, излучаемых электронами. А внутри атома в движении электронов действует гравитация. Механическая модель атома это и покажет. На современном уровне электронной механики модель атома можно изобразить и в компьютере программистами с соответствующими пояснениями. Но всё равно это будет теоретической картинкой, а не материальной моделью. Механическая модель показывает процессы электронных поглощений и излучений квантов, появление электронной орбитали, кроме обращения электрона вокруг ядра атома демонстрирует и обращение электрона вокруг трех пространственных осей X, Y и Z, частоту и длины излучаемых кван-товых волн. И их можно численно определять зрительно и соответствую-щими измерительными приборами.