, полученным из уравнения Кирхгофа введением обозначений:
,
. Для выяснения резонансной частоты возьмем вынуждающую силу, изменяющуюся по закону косинуса.
.
, где первое слагаемое - решение с.о.у. (оно затухает и нас не интересует), а второе - произвольное частное решение, которое ищется в указанном виде (в силу особенностей взятой вынуждающей силы). Подставим решение
в уравнение и (с например, векторной диаграммы) получим
.
и
. Получаем для амплитуды тока и напряжений следующие выражения:
и
.
, а у тока при
.
. За это время система совершила
колебаний, где
- собственная частота колебаний системы (следует из решения д.у.). Так вот, величина
называется добротностью контура.
, отсюда 
и
Таким образом, отличие истинного решения от полученного примерно 0.03.
По условию и ЗСЗ Qбыло= q1+q2=2q= Qcтало=Q; U1было= q/C; стало: Cпар=С1+С2=3С, U1ст= U2ст=U= Q/Cпар= 2q/3C, U1стало ÷ U1было=2q*C/(3C*q)= 2/3 уменьшилось в 3/2 раза -ответ А