Объяснение:
Посчитаем поле бесконечной равномерно заряженной нити. Из аксиальной симметрии задачи следует, что и поле имеет аксиальную симметрию. Другими словами, оно является функцией только расстояния от нити до точки наблюдения: \mathbf{E}=E(r)\cdot \mathbf{e_r}}
Здесь \mathbf{e_r}er - единичный вектор вдоль перпендикуляра из точки наблюдения на нить, он "смотрит" прочь от последней, а rr - расстояние от точки наблюдения до нити.
Для того, чтобы посчитать поле в явном виде, проще всего воспользоваться теоремой Гаусса.
Выберем такую поверхность: это цилиндр, ось которого совпадает с нитью, радиусом rr и длиной образующей ll .
Теорема Гаусса гласит, что поток поля через замкнутую поверхность с точностью до размерного множителя \frac{1}{\varepsilon_0}ε01 равен заряду внутри нее:
$\int\limits_{\partial V} \mathbf{E}\cdot \mathrm d\mathbf S=\frac{1}{\varepsilon_0}\int\limits_V \rho\ \mathrm d V
Левая часть в нашем случае распадается на три слагаемых:
1) поток через боковую поверхность,
2) поток через верхнее дно,
3) поток через нижнее дно.
Очевидно, что два последних вклада не дадут, поскольку, как уже было сказано, поле имеет только радиальные компоненты, а значит, перпендикулярно плоскостям, в которых лежат основания цилиндра.
Первое слагаемое дает вклад \Phi=E(r)\cdot 2\pi r\cdot lΦ=E(r)⋅2πr⋅l
Правая часть теоремы Гаусса тоже очень легко считается.
Q=\lambda lQ=λl
Итак,
E(r)2\pi rl=\dfrac{1}{\varepsilon_0}\lambda l.E(r)2πrl=ε01λl.
Отсюда легко выразить явный вид поля:
E(r)=\dfrac{\lambda}{2\pi \epsilon_0}\cdot \dfrac 1rE(r)=2πϵ0λ⋅r1 .
Все, подставим числа, посчитаем.
E(r)=\dfrac{k\lambda}{2r}=\dfrac{9\cdot 10^9\cdot 2\cdot 10^{-4}}{2\cdot 10\cdot 10^{-2}}=900\mathrm{\ \dfrac Vm}.E(r)=2rkλ=2⋅10⋅10−29⋅109⋅2⋅10−4=900 mV.
энергию плоского конденсатора определим по такой формуле:
\[w = \frac{{c{u^2}}}{2}\; \; \; \; (1)\]
электроемкость плоского конденсатора найдем по известной формуле:
\[c = \frac{{\varepsilon {\varepsilon _0}s}}{d}\; \; \; \; (2)\]
здесь \(\varepsilon\) — диэлектрическая проницаемость слюды, равная 7, \(\varepsilon_0\) — электрическая постоянная, равная 8,85·10-12 ф/м.
подставим (2) в (1), чтобы получить решение этой в общем виде:
\[w = \frac{{\varepsilon {\varepsilon _0}s{u^2}}}{{2d}}\]
посчитаем ответ:
\[w = \frac{{7 \cdot 8,85 \cdot {{10}^{ — 12}} \cdot 36 \cdot {{10}^{ — 4}} \cdot {{300}^2}}}{{2 \cdot 0,14 \cdot {{10}^{ — 2 = 7,2 \cdot {10^{ — 6}}\; дж = 7,2\; мкдж\]
ответ: 7,2 мкдж.
Один дюйм составляет 25.4 мм.
Поэтому: 42 размер это:
Прибавим к размеру ноги ещё 8 мм, поскольку подошва всегда больше ноги.
Итак, длина подошвы:
Пусть средняя ширина подошвы составляет примерно 6 см.
Тогда площадь одной подошвы можно считать равной:
Найдём вес. Поскольку никакой дополнительной информации не дано, то вес мы будем определять в статической ситуации на Земле. А значит, вес равен реакции опоры и силе тяжести:
Найдём давление, учитывая, что опора распределяется на два ботинка:
Учитывая значительную погрешность, которая имеется при вычислении площади, все вычисленные значения, зависимые от площади можно приводить лишь максимум до второго значащего числа, и то с натяжкой, поэтому:
ОТВЕТ:
Вес
Площадь:
Давление: