М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Andrey7745
Andrey7745
01.06.2022 12:46 •  Физика

1)заряженную стеклянную палочку поднесли к станиолевой гильзе, подвешенной на шелковой нити. гильза отклонилась к заряженной стеклянной палочке. но после касания палочки гильза отталкивается от нее. объясните явление 2)имеются два изолированных металлических шара. шар большего радиуса заряжен, второй не имеет заряда. сравните заряды обоих шаров после соединения их металлической проволокой.

👇
Ответ:
babkaaalina
babkaaalina
01.06.2022
После того как гильза коснётся палочки часть электронов с палочки перейдёт на гильзу.  И гильза, и палочка станут отрицательно заряжены, а одноимённо заряженные тела отталкиваются.
Если сразу поднести положительно заряженную палочку, то гильза притянется  к палочке, т.к. заряды разноимённые.
4,8(31 оценок)
Открыть все ответы
Ответ:
mahachik7
mahachik7
01.06.2022
Так как заряженный шар радиуса R смещен от центра сферы на R/2 то любая сфера с центром в заданной точке и радиусом больше R+R/2 содержит внутри исходный заряженный шар с зарядом q
теперь нужно воспользоваться теоремой остроградского-гаусса
поток вектора напряженности электрического поля через замкнутую сферическую поверхность равен заряду ограниченному єтой поверхности делить на Еo
заряд известен, он равен заряду шара, полностью находящегося внутри сферы. Ео - электрическая постоянная
Ф=q/Eo=17,7*10^(-9)/8,85 × 10^-12=2000 В*м
4,7(26 оценок)
Ответ:
Nemsix
Nemsix
01.06.2022
Если пренебречь сопротивлением воздуха и считать снаряд материальной точкой, то задача о движении снаряда, выпущенного из пушки под углом α к горизонту с начальной скоростью v, сводится к известной задаче о движении тела, брошенного под углом к горизонту.
Наложим на систему декартовы координаты, совместив их начало с пушкой и рассмотрим снаряд как материальную точку, участвующую одновременно в двух движениях - по оси х и оси y.
Тогда в некий момент времени t можно записать следующие уравнения для скорости точки:
\displaystyle v_x=v\cos\alpha \\ v_y=v\sin\alpha-gt
Уравнение перемещения точки по осям будет иметь вид
\displaystyle x=vt\cos\alpha \\ y=vt\sin\alpha-\frac{gt^2}{2}
В любой точке М квадрат расстояния r² от начала координат до этой точки может быть найден по теореме Пифагора. Мы ищем квадрат, чтобы не заморачиваться извлечением квадратного корня, поскольку сама величина r нам не нужна.
\displaystyle L_M=r_M^2=x_M^2+y_M^2=(vt\cos\alpha)^2+\left(vt\sin\alpha-\frac{gt^2}{2}\right)^2
Чтобы определить области убывания функции L(t), нужно найти значения t при которых производная L'(t) будет отрицательной.
Упростим L(t), раскрыв скобки и используя основное тригонометрическое тождество, а затем найдем производную.
\displaystyle L(t)=t^2v^2-vt^3g\sin\alpha+\frac{1}{4}g^2t^4 \\ \frac{dL}{dt}=2tv^2-3vt^2g\sin\alpha+g^2t^3=t(2v^2-3vtg\sin\alpha+g^2t^2)
Осталось решить неравенство \displaystyle 2v^2-3vtg\sin\alpha+g^2t^2\ \textless \ 0
Сначала определим точки, где левая часть обращается в ноль, а потом найдем необходимые интервалы. Получается квадратное уравнение относительно t; его решение тривиально и приводить я его не буду.
Получаем два корня,которые можно записать одним выражением:
\displaystyle \frac{v}{2g}\left(3\sin\alpha\pm\sqrt{1-9\cos^2 \alpha}\right)
Отсюда мы получаем область допустимых значений sin(α) ∈ [2√2/3;1] - значение 1 берем из условия, что углы больше 90° не рассматриваются.
С некоторым приближением можно записать α ∈ [70.53°;90°]
Первый (меньший) корень задает нам точку, начиная с которой расстояние  между пушкой и снарядом начинает сокращаться.
t_1=\displaystyle \frac{v}{2g}\left(3\sin\alpha-\sqrt{1-9\cos^2 \alpha}\right)
Второй (больший) корень задает точку, после прохождения которой расстояние снова начинает увеличиваться.
t_2=\displaystyle \frac{v}{2g}\left(3\sin\alpha+\sqrt{1-9\cos^2 \alpha}\right)
Но для t₂ необходимо учесть, что наши формулы рассматривают процесс движения тела до бесконечности, а в реальности снаряд может падать ниже уровня пушки лишь разве что в овраг... Поэтому достаточно ограничиться временем движения снаряда при достижении им горизонта пушки, т.е. у=0 в нашей системе координат.
Для этого находим решение уравнения у=0
\displaystyle vt\sin\alpha-\frac{gt^2}{2}=0 \\ t\left(v\sin\alpha-\frac{gt}{2}\right)=0 \to t_1=0 \\ v\sin\alpha-\frac{gt_2}{2}=0 \to t_2= \frac{2v\sin\alpha}{g}
Тривиальное решение t₁=0 нас не интересует, а вот t₂ - то, что нужно.
Окончательно получаем решение
\displaystyle t \in \left[t_1;\min\left(t_2,\frac{2v\sin\alpha}{g}\right)\right], \\
t_1=\frac{v}{2g}\left(3\sin\alpha-\sqrt{1-9\cos^2 \alpha}\right) \\ \\
t_2=\frac{v}{2g}\left(3\sin\alpha+\sqrt{1-9\cos^2 \alpha}\right) \\ \\
\alpha \in [70.53^\circ;90^\circ]
Если интересует длительность промежутка времени, в который приближение происходит, она равна
\displaystyle \min\left(t_2,\frac{2v\sin\alpha}{g}\right)\right]-t_1
Если минимум равен t₂, получаем решение
\displaystyle \frac{v}{2g}\left(3\sin\alpha+\sqrt{1-9\cos^2 \alpha}\right)- \frac{v}{2g}\left(3\sin\alpha-\sqrt{1-9\cos^2 \alpha}\right)= \\ \\ \frac{v}{g}\cdot\sqrt{1-9\cos^2 \alpha}, \ \alpha \in [70.53^\circ;90^\circ]

Сборник по под редакцией савченко. 1.3.30* звучит так (дословно) снаряд вылетает из пушки со скорост
4,5(12 оценок)
Новые ответы от MOGZ: Физика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ