Объяснение:
Пластина делится на две прямоугольные части.
У прямоугольника центр тяжести в середине.
У первой - заштрихованной пластины площадь 3a^2
А расстояния от координатных осей до центра тяжести:
Хцт1=0,5а
Уцт1=1,5а
У второй пластины площадь a^2
расстояния от координатных осей до центра тяжести:
Хцт2=1,5а
Уцт1=0,5а
Центр тяжести можно найти если просуммировать площади умноженные на расстояние до центра тяжести каждой простой фигуры, а потом эту сумму поделить на общую площадь.
Общая площадь фигуры 4а^2
Остается посчитать
Хц.т.=(3a^2*0,5а+a^2*1,5а)/4а^2=3а^3/4а^2=3а/4=0,75а
Уц.т.=(3a^2*1,5а+a^2*0,5а)/4а^2=3а^3/4а^2=5а/4=1,25а
Картинка приложена
Сопротивление проволоки:
R = ρL/S, где ρ = 0,018 Ом·мм²/м - удельное сопр. меди
L - длина проволоки, м
S - площадь поперечного сечения, мм²
Тогда: L/S = R/ρ = 50 : 0,018 ≈ 2777,8
Объем проволоки:
V = m/ρ₁ где m = 300 г - масса проволоки
ρ₁ = 8,9 г/см³ - плотность меди
V = 300 : 8,9 ≈ 33,7 (см³)
Так как V = LS и L = 2777,8 · S, то:
2777,8 · S² = 33,7
S² = 0,0121
S = 0,11 (мм²) L = 2777,8 · 0,11 = 305,6 (м)
2 б
3 б либо г
4 а
5 в
6 г