трение при перекатывании колес вагона по рельсам. многие обычные способы передвижения были бы совершенно невозможны при отсутствии трения.
вещи не соскальзывают со стола, работают тормоза
полезные: сила трения резины автомобильного колеса об асфальт, колеса поезда о металл рельса, сила трения пенькового каната о металл при швартовке судна, сила сцепления ниток друг с другом и тканью при пришивании пуговиц, трение подошвы ботика о землю при ходьбе, сила трения покоя, которой книги, ручки и пр. могут лежать на наклонной поверхности.
вредные: трение песчинок о металл внутри подшипника, трение скольжения коньков о лед должно быть как можно меньше, трение механизмов дверного замка уменьшают путём графитовой смазки.
Испарение.
Испарение — это переход вещества из жидкого состояния в газообразное (пар), происходящее со свободной поверхности жидкости.Сублимацию, или возгонку, т.е. переход вещества из твердого состояния в газообразное, также называют испарением.
Из повседневных наблюдений известно, что количество любой жидкости (бензина, эфира, воды), находящейся в открытом сосуде, постепенно уменьшается. Жидкость не исчезает бесследно — она превращается в пар. Испарение — это один из видов парообразования. Другой вид — это кипение.
Механизм испарения.
Как происходит испарение? Молекулы любой жидкости находятся в непрерывном и беспорядочном движении, причем, чем выше температура жидкости, тем больше кинетическая энергия молекул. Среднее значение кинетической энергии имеет определенную величину. Но у каждой молекулы кинетическая энергия может быть как больше, так и меньше средней. Если вблизи поверхности окажется молекула с кинетической энергией, достаточной для преодоления сил межмолекулярного притяжения, она вылетит из жидкости. То же самое повторится с другой быстрой молекулой, со второй, третьей и т. д. Вылетая наружу, эти молекулы образуют над жидкостью пар. Образование этого пара и есть испарение.
Поглощение энергии при испарении.
Поскольку при испарении из жидкости вылетают более быстрые молекулы, средняя кинетическая энергия оставшихся в жидкости молекул становится все меньше и меньше. Это значит, что внутренняя энергия испаряющейся жидкости уменьшается. Поэтому если нет притока энергии к жидкости извне, температура испаряющейся жидкости понижается, жидкость охлаждается (именно поэтому, в частности, человеку в мокрой одежде холоднее, чем в сухой, особенно при ветре).
Однако при испарении воды, налитой в стакан, мы не замечаем понижения ее температуры. Чем это объяснить? Дело в том, что испарение в данном случае происходит медленно, и температура воды поддерживается постоянной за счет теплообмена с окружающим воздухом, из которого в жидкость поступает необходимое количество теплоты. Значит, чтобы испарение жидкости про исходило без изменения ее температуры, жидкости необходимо сообщать энергию.
Количество теплоты, которое необходимо сообщить жидкости для образования единицы массы пара при постоянной температуре, называется теплотой парообразования.
Конденсация.
Конденсация (от лат. condensatio — уплотнение, сгущение) — переход вещества из газообразного состояния (пара) в жидкое или твердое состояние.
Известно, что при наличии ветра жидкость испаряется быстрее. Почему? Дело в том, что одновременно с испарением с поверхности жидкости идет и конденсация. Конденсация происходит из-за того, что часть молекул пара, беспорядочно перемещаясь над жидкостью, снова возвращается в нее. Ветер же выносит вылетевшие из жидкости молекулы и не дает им возвращаться.
Конденсация может происходить и тогда, когда пар не соприкасается с жидкостью. Именно конденсацией объясняется, например, образование облаков: молекулы водяного пара, поднимающиеся над землей, в более холодных слоях атмосферы группируются в мельчайшие капельки воды, скопления которых и представляют собойоблака. Следствием конденсации водяного пара в атмосфере являются также дождь и роса.
При испарении жидкость охлаждается и, став более холодной, чем окружающая среда, начинает поглощать ее энергию. При конденсации же, наоборот, происходит выделение некоторого количества теплоты в окружающую среду, и ее температура несколько повышается. Количество теплоты, выделяющееся при конденсации единицы массы, равно теплоте испарения.
Представьте себя за рулем. Вам звонят и спрашивают - "Где ты сейчас и куда движешься?". Ваш ответ очевиден, мол в 11 часов 32 минуты 18 секунд московского времени я нахожусь около села Нижний Задрипинск 45 градусов северной широты ... ну и так далее, Вы всегда даете полные ответы. Это же нормально, знать "Где" находишься в определенный "момент" времени и куда движешься.
Ну а теперь представьте, что на этот вопрос Вы можете ответить только так:
- Ну, тебя что интересует, где я нахожусь, или куда двигаюсь? Двигаюсь со скоростью 1500 км/сек а нахожусь в общем везде. А если интересует где нахожусь, то около Задрипинска, но куда и с какой скоростью движусь не знаю.
Понятно? Мне тоже. Но мы с Вами поняли, что такое неопределенность Гейзенберга.
Она гласит, что в микромире НЕВОЗМОЖНО точно определить одновременно координату и импульс частицы, только что-то одно, или-или.
Подивившись и поохав об идиотах-физиках возьмемся за дело, - а чего это так странно?
Да все просто.Мы с вами большие мальчики и девочки, и, по сравнению с микромиром мы имеем гигантские размеры. Это и есть главное. Вот подумайте, как мы видим? Просто. На предмет что мы видим, падает фотон (фотоны) отражается и попадает в сетчатку нашего глаза. И несет информацию о том, от чего отразился. Пусть это будет стол. Если бы он не отражал свет, мы бы его не видели. Оказывает свет воздействие на стол? несомненно! Но такое малое, что ни стол ни мы этого не в состоянии заметить. .Другой случай, - мы измеряем размеры тетрадки. как это делается? Прикладывается линейка... ну вы поняли.
Так вот, наблюдаем мы предмет или измеряем его характеристику - МЫ ВСЕГДА ВОЗДЕЙСТВУЕМ на предмет. Хоть фотоном света, но воздействуем. В нашем Макромире, это воздействие ничтожно, в микромире, размеры частиц сравнимы с фотоном и это "измерительное" воздействие оказывает существенное влияние на то, что мы хотим измерить. И вот это наше влияние, которое мы НЕ МОЖЕМ не оказывать приводит к тому, что мы или измерим импульс или зафиксируем координаты. Только так. Только одно - или где находимся или куда и с какой скоростью движемся. Измерив одно, мы меняем другое таким образом, что не можем НИЧЕГО об этой характеристике сказать. Если так подумать, то все вполне логично. Только непривычно, нам великанам.