Напряжённость электрического поля иногда называют силовой характеристикой электрического поля, так как всё отличие от вектора силы, действующей на заряженную частицу, состоит в постоянном[2] множителе.
В каждой точке в данный момент времени существует своё значение вектора {\displaystyle {\vec {E}}}\vec E (вообще говоря — разное[3] в разных точках пространства), таким образом, {\displaystyle {\vec {E}}}\vec E — это векторное поле. Формально это отражается в записи
{\displaystyle {\vec {E}}={\vec {E}}(x,y,z,t),}{\vec E}={\vec E}(x,y,z,t),
представляющей напряжённость электрического поля как функцию пространственных координат (и времени, так как {\displaystyle {\vec {E}}}\vec E может меняться со временем). Это поле вместе с полем вектора магнитной индукции представляет собой электромагнитное поле[4], и законы, которым оно подчиняется, есть предмет электродинамики.
Напряжённость электрического поля в Международной системе единиц (СИ) измеряется в вольтах на метр [В/м] или в ньютонах на кулон [Н/Кл].
1.До́за излуче́ния — в радиационной безопасности, физике и радиобиологии — величина, используемая для оценки степени воздействия ионизирующего излучения на любые вещества, живые организмы и их ткани.
2.Строгих цифр нет, но в целом ситуация следующая.
Обычно естественный радиационный фон лежит в пределах от 7мкР/ч до 15 мкР/ч (микрорентген в час).
Безопасным считается до 20мкР/ч.
Самый малый естественный фон - 4-5мкР/ч.
3.Предельно допустимая за год доза излучения для лиц, работающих с радиоактивными препаратами равна 14 мЗв/год, или приблизительно 1,4 Р/год
2. Использование в холодильных камерах
3. можно искусственно синтезировать аминокислоты и другие биохимические вещества.
4. Ультрафиолетовые излучения имеют специальные лампы. .
и многое другое. .