Особенно перспективной считают рентгеновскую двойную звезду V404 Лебедя, масса невидимого компонента которой оценивается не менее, чем в 6 масс Солнца. Другие кандидаты в черные дыры находятся в двойных системах Лебедь X-1, LMC X-3, V616 Единорога, QZ Лисички, а также в рентгеновских новых Змееносец 1977, Муха 1981 и Скорпион 1994. Почти все они расположены в пределах нашей Галактики, а система LMC X-3 - в близкой к нам галактике Большое Магелланово Облако. Другим направлением поиска черных дыр служит изучение ядер галактик. В них скапливаются и уплотняются огромные массы вещества, сталкиваются и сливаются звезды, поэтому там могут формироваться сверхмассивные черные дыры, превосходящие по массе Солнце в миллионы раз. Они притягивают к себе окружающие звезды, создавая в центре галактики пик яркости. Они разрушают близко подлетающие к ним звезды, вещество которых образует вокруг черной дыры аккреционный диск и частично выбрасывается вдоль оси диска в виде быстрых струй и потоков частиц. Представления о чёрной дыре как об абсолютно поглощающем объекте были скорректированы С.Хокингом в 1975 году. Изучая поведение квантовых полей вблизи чёрной дыры, он предсказал, что чёрная дыра обязательно излучает частицы во внешнее пространство и тем самым теряет массу. Этот эффект называется излучением (испарением) Хокинга. Упрощённо говоря, гравитационное поле поляризует вакуум, в результате чего возможно образование не только виртуальных, но и реальных пар частица-античастица. Состав излучения зависит от размера чёрной дыры: для больших чёрных дыр это в основном фотоны и нейтрино, а в спектре лёгких чёрных дыр начинают присутствовать и тяжёлые частицы. Спектр хокинговского излучения для безмассовых полей оказался строго совпадающим с излучением абсолютно чёрного тела, что позволило приписать чёрной дыре температуру Расчеты в рамках ОТО указывают лишь на возможность существования черных дыр, но отнюдь не доказывают их наличия в реальном мире, открытие черной дыры стало бы важным шагом в развитии физики.
Для измерения мощности электрического тока принята единица, называемая ватт (Вт). Мощностью в 1 Вт обладает ток силой в 1 А при разности потенциалов, равной 1 В. Для вычисления мощности постоянного тока в ваттах нужно силу тока в амперах умножить на напряжение в вольтах. Если обозначить мощность электрического тока буквой P, то приведенное выше правило можно записать в виде формулы P = I*U. (1) Воспользуемся этой формулой для решения числового примера. Требуется определить, какая мощность электрического тока необходима для накала нити радиолампы, если напряжение накала равно 4 в, а ток накала 75 мА Определим мощность электрического тока, поглощаемую нитью лампы: Р= 0,075 А*4 В = 0,3 Вт. Мощность электрического тока можно вычислить и другим путем. Предположим, что нам известны сила тока в цепи и сопротивление цепи, а напряжение неизвестно. В этом случае мы воспользуемся знакомым нам соотношением из закона Ома: U=IR и подставим правую часть этого равенства (IR) в формулу (1) вместо напряжения U. Тогда формула (1) примет вид: P = I*U =I*IR или Р = I2*R. (2)
Величина тока рассчитывается по мощности и необходима на этапе проектирования (планирования) жилища – квартиры, дома. От значения этой величины зависит выбор питающего кабеля (провода), по которому могут быть подключены приборы электропотребления к сети.Зная напряжение электрической сети и полную нагрузку электроприборов, можно по формуле вычислить силу тока, который потребуется пропускать по проводнику (проводу, кабелю). По его величине выбирают площадь сечения жил.Если известны электропотребители в квартире или доме, необходимо выполнить несложные расчёты, чтобы правильно смонтировать схему электроснабжения. Аналогичные расчёты выполняются для производственных целей: определения необходимой площади сечения жил кабеля при осуществлении подключения промышленного оборудования (различных промышленных электрических двигателей и механизмов). вот так
Другим направлением поиска черных дыр служит изучение ядер галактик. В них скапливаются и уплотняются огромные массы вещества, сталкиваются и сливаются звезды, поэтому там могут формироваться сверхмассивные черные дыры, превосходящие по массе Солнце в миллионы раз. Они притягивают к себе окружающие звезды, создавая в центре галактики пик яркости. Они разрушают близко подлетающие к ним звезды, вещество которых образует вокруг черной дыры аккреционный диск и частично выбрасывается вдоль оси диска в виде быстрых струй и потоков частиц.
Представления о чёрной дыре как об абсолютно поглощающем объекте были скорректированы С.Хокингом в 1975 году. Изучая поведение квантовых полей вблизи чёрной дыры, он предсказал, что чёрная дыра обязательно излучает частицы во внешнее пространство и тем самым теряет массу. Этот эффект называется излучением (испарением) Хокинга. Упрощённо говоря, гравитационное поле поляризует вакуум, в результате чего возможно образование не только виртуальных, но и реальных пар частица-античастица.
Состав излучения зависит от размера чёрной дыры: для больших чёрных дыр это в основном фотоны и нейтрино, а в спектре лёгких чёрных дыр начинают присутствовать и тяжёлые частицы. Спектр хокинговского излучения для безмассовых полей оказался строго совпадающим с излучением абсолютно чёрного тела, что позволило приписать чёрной дыре температуру
Расчеты в рамках ОТО указывают лишь на возможность существования черных дыр, но отнюдь не доказывают их наличия в реальном мире, открытие черной дыры стало бы важным шагом в развитии физики.