Запишем закон движения автомобиля: ma = F - μmg a = F/m - μg. С другой стороны, пройденный путь равен: s = v² / 2a. Откуда получаем: a = v² / 2s. Приравниваем оба значения для a: F/m - μg = v² / 2s μg = F/m - v² / 2s μ = (F/m - v² / 2s)/g μ = (14000/5000 - 10² / 2·75)/10 = (2,8 - 2/3)/10 ≈ 0,21
Жидкость внутреннее строение Жидкое состояние. Структура жидкости. Жидкость имеет много общего с твердым состоянием. Компактное расположение частиц обусловливает высокую плотность и малую сжимаемость по сравнению с газами. Структура и внутреннее строение жидкостей и твердых тел во многом схожи и характеризуются упорядоченным расположением частиц. У кристаллических твердых тел упорядочение распространяется на огромное количество межатомных расстояний, т. е. ближний порядок переходит в дальний. В жидкости вследствие относительно высокой подвижности частиц упорядоченность ограничивается небольшими островками (агрегатами, или кластерами ), причем последние ориентированы друг относительно друга беспорядочно и часть пространства между ними остается не заполненной веществом. Эти образования нестабильны, связи в них постоянно разрушаются и вновь возникают. При этом происходит обмен частицами между соседними кластерами. Таким образом, в структурном отношении для жидкости характерно наличие лабильного (подвижного) равновесия
Рассмотрим два участка движения тела. Участок 1 - наклонный. Участок 2 - горизонтальный. На участке 1 выберем направление оси х вдоль наклонной поверхности вниз, оси у - перпендикулярно наклонной поверхности вверх. На тело действуют три силы: вес (направлена вертикально вниз, раскладывается на две составляющие по осям х - в полож.направлении и у-в отриц.направлении), норм.реакция опоры (направлена перпендикулярно к накл.поверхности вверх, т.е. в полож.направлении оси у), трения (направлена в отриц.направлении по оси х). Проекция веса тела на ось у полностью уравновешена реакцией опоры, т.е. ускорение вдоль у равно 0. Тогда N=m*g*cos(alfa). ВДоль оси х 2-закон Ньютона выглядит так: m*g*sin(alfa)-μ*N=m*a. Учитывая выражение для реакции опоры, получим: m*g*sin(alfa)-μ*m*g*cos(alfa)=m*a. Сократим на m: g*sin(alfa)-μ*g*cos(alfa)=a. Исходим из того, что тело начало движение из состояние покоя. Тогда скорость в конце наклонного участка 1: V=a*t. Время движения: t=SQRT(2*l/a). L-длина наклонного участка: L=h/sin(alfe). Подставив все это в выражение для скорости , получим: V=SQRT(2*L*g*(sin(alfa)-μ*cos(alfa)). Это скорость в конце участка 1, она же есть начальная скорость на участке 2 (горизонтальном).
На участке 2 тело движется под действием тех же трех сил, только теперь осб х - горизонтальная, у - вертикальная. Таким образом, вес направлен вертикально вниз и его х-составляющая равна 0. По 2 закону нюьтона, учитвая, что вес полностью уравновешен силой реакции опоры, получим: Fтр=μ*N=μ*m*g=m*a2, где a2-ускорение (замедление) на участке 2. Отсюда :а2=μ*g. Движение на этом участке равнозамедленное. Начальная скорость известна, конечная - равна 0: 0=V-a2*t, отсюда: t=V/a2=V/(μ*g). Это время, пройденное телом до остановка на участке 2. Расстояние в случае равнозамедленного движения:L2=V*t-a2*t*t/2=V*V/(μ*g)-μ*g*(V/(μ*g)*(V/(μ*g)/2. Упростив выражение получим: L2=V*V/(2*μ*g). Подставим найденное для участка 1 выражение конечной скорости V: L2=2*L*g*(sin(alfa)-μ*cos(alfa))/(2*μ*g)=L*(sin(alfa)-μ*cos(alfa))/μ=h*(sin(alfa)-μ*cos(alfa))/(μ*sin(alfa)). В конечном преобразовании использовано выражение для длины наклонного пути, полученное при рассмотрении участка 1.
ma = F - μmg
a = F/m - μg.
С другой стороны, пройденный путь равен: s = v² / 2a.
Откуда получаем: a = v² / 2s.
Приравниваем оба значения для a:
F/m - μg = v² / 2s
μg = F/m - v² / 2s
μ = (F/m - v² / 2s)/g
μ = (14000/5000 - 10² / 2·75)/10 = (2,8 - 2/3)/10 ≈ 0,21