М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
matetskayamilan
matetskayamilan
12.01.2021 06:42 •  Физика

Может ли быть гипотиза ошибочной? пртведите примеры из других наук

👇
Ответ:
YTCoolboy55
YTCoolboy55
12.01.2021
Да может , многие люди ошибались
4,7(87 оценок)
Открыть все ответы
Ответ:
adamabiev
adamabiev
12.01.2021

ответ:  Расстояние между центром Земли и спутником S = 6580 км = 6580000 м.

Сила гравитационного взаимодействия  F =  476 Н

Объяснение: Дано:

Радиус Земли Rз = 6380 км

Высота полета спутника h = 200 км

Масса спутника m = 52 кг

Масса Земли Мз = 5,94*10^24 кг

Гравитационная постоянная G = 6,674*10^-11 м³/кг с²

Расстояние между центром Земли и спутником S - ?

Сила притяжения между Землей и спутником F - ?

S = Rз +  h = 6380 + 200 = 6580 км = 6580000 м.

Сила гравитационного взаимодействия  F = G*Мз*m/S² = 6,674*10^-11*52* 5,94*10^24/6580000² = 476 Н

4,4(29 оценок)
Ответ:

Применим теорему о циркуляции вектора для вычисления простейшего магнитного поля – бесконечно длинного соленоида, представляющего собой тонкий провод, намотанный плотно виток к витку на цилиндрический каркас (рис. 2.11).

Рис. 2.11

Соленоид можно представить в виде системы одинаковых круговых токов с общей прямой осью.

Бесконечно длинный соленоид симметричен любой, перпендикулярной к его оси плоскости. Взятые попарно (рис. 2.12), симметричные относительно такой плоскости витки создают поле, в котором вектор перпендикулярен плоскости витка, т.е. линии магнитной индукции имеют направление параллельное оси соленоида внутри и вне его.

Рис. 2.12

Из параллельности вектора оси соленоида вытекает, что поле как внутри, так и вне соленоида должно быть однородным.

Возьмём воображаемый прямоугольный контур 1–2–3–4–1 и разместим его в соленоиде, как показано на рисунке 2.13.

Рис. 2.13

Второй и четвёртый интегралы равны нулю, т.к. вектор перпендикулярен направлению обхода, т.е .

Возьмём участок 3–4 – на большом расстоянии от соленоида, где поле стремится к нулю; и пренебрежём третьим интегралом, тогда

где – магнитная индукция на участке 1–2 – внутри соленоида, – магнитная проницаемость вещества.

Если отрезок 1–2 внутри соленоида, контур охватывает ток:

где n – число витков на единицу длины, I – ток в соленоиде (в проводнике).

Тогда магнитная индукция внутри соленоида:

, (2.7.1)

Вне соленоида:

и , т.е. .

Бесконечно длинный соленоид аналогичен плоскому конденсатору – и тут, и там поле однородно и сосредоточено внутри.

Произведение nI – называется число ампер витков на метр.

У конца полубесконечного соленоида, на его оси магнитная индукция равна:

, (2.7.2)

Практически, если длина соленоида много больше, чем его диаметр, формула (2.7.1) справедлива для точек вблизи середины, формула (2.7.2) для точек около конца.

Если же катушка короткая, что обычно и бывает на практике, то магнитная индукция в любой точке А, лежащей на оси соленоида, направлена вдоль оси (по правилу буравчика) и численно равна алгебраической сумме индукций магнитных полей создаваемых в точке А всеми витками. В этом случае имеем:

· В точке, лежащей на середине оси соленоида магнитное поле будет максимальным:

, (2.7.3)

где L – длина соленоида, R – радиус витков.

· В произвольной точке конечного соленоида (рис. 2.14) магнитную индукцию можно найти по формуле

, (2.7.4)

Рис. 2.14

На рисунке 2.15 изображены силовые линии магнитного поля : а) металлического стержня; б) соленоида; в) железные опилки, рассыпанные на листе бумаги, помещенной над магнитом, стремятся вытянуться вдоль силовых линий; г) магнитные полюсы соленоида.

4,4(57 оценок)
Это интересно:
Новые ответы от MOGZ: Физика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ