Средняя скорость равна отношению всего пути ко всему затраченному времени, тогда vcp = s/t, (1) где t - время движения равное сумме времен t = t1 + t2 (2) на первой трети пути и на оставшихся двух третях пути: t1 = (1/3)s/v1, а t2 = (2/3)s/v2. (3) после подстановки (3) в (2), а потом в (1), получим vcp = s/((1/3)s/v1 + (2/3)s/v2). после сокращения на s и получим vcp = 3v1v2/(v2 + 2v1). теперь останется выразить искомую скорость на втором участке v2 = 2vcpv1/(3v1 - vcp). после вычислений v2 = 2•20•15/(3•15 - 20) = 24 км/ч. ответ: v2 = 24 км/ч.
c1=4,2 кДж/(кг*К), λ=330000 Дж/кг, V1=3,7 л=3,7*10*-3 м³, t1= 18°С, m2=0,5 кг, t2= 0°С. t= 8°С. m-? Вода в сосуде отдает количество теплоты Q1=c1ρV1(t1-t). Лед, содержащийся в мокром снеге получит количество теплоты для плавления Q2=λ(m2-m) и нагревания получившейся воды от t2= 0°С до t= 8°С Q3=c1(m2-m)(t-t2). Вода, содержащаяся в мокром снеге получает количество теплоты для нагревания от t2= 0°С до t= 8°С Q4=c1m(t-t2). Уравнение теплового баланса Q1=Q2+Q3+Q4. c1ρV1(t1-t)=λ(m2-m)+c1(m2-m)(t-t2)+c1m(t-t2). c1ρV1(t1-t)=λm2-λm+c1m2(t-t2)-c1m(t-t2)+c1m(t-t2). c1ρV1(t1-t)=λm2-λm+c1m2(t-t2). λm=λm2+c1m2(t-t2)-c1ρV1(t1-t). m=(λm2+c1m2(t-t2)-c1ρV1(t1-t))/λ. m=(330000*0,5+4200*0,5*8-4200*3,7*10)/330000 = (165000+16800-155400)/330000 = 0,08 кг= 80 г.