Пусть масса вагона равна М. Система движется, как целое, поэтому ускорение первого и второго вагонов одинаковое, пусть оно равно а. Силу трения можно не учитывать, она одинакова для первого и второго вагонов. Пусть между локомотивом и первым вагоном сила натяжения равна Т₁, между первым и вторым вагонами Т₂. Тогда II з-н Ньютона в проекции на ось ОХ, направление которой совпадает с направлением движения запишется для первого вагона так: Ма = Т₁ - Т₂ А для второго так: Ма = Т₂ Решая эту простенькую систему получим, что Т₁ = 2Ма; Т₂ = Ма. Отсюда Т₁/Т₂ = 2.
Так как на протяжении всего изопроцесса температура постоянна, то мы можем воспользоваться законом Бойля-Мариотта: P1V1=P2V2=const
При этом у нас по условию: V(левая часть)=2V(правая часть)
Тогда, воспользовавшись законом Бойля-Мариотта, можно записать в виде: PлV=2PпV
По уравнению Менделеева-Клапейрона: PV = m R T / M
Тогда можно переписать в виде: m(левая часть) R T / M = 2m(правая часть) R T / M
Так как T=const, то после сокращений получим ответ на поставленный вопрос задачи: m(левая часть) = 2m(правая часть), то есть, масса газа в правой части цилиндра больше в два раза массы газа в левой части цилиндра.
1)
Плавим лед:
Q₁ = m*q = 4*0,33*10⁶ = 1,32*10⁶ Дж
2)
Нагреваем полученную изо льда воду:
Q₂ = c*m*(t₂-t₁) = 4200*4*(20-0) ≈ 0,34*10⁶ Дж
3)
Общее количество теплоты:
Q = Q₁+Q₂ = (1,32+0,34)*10⁶ = 1,66*10⁶ Дж