При этом ударе (абсолютно неупругом) выполняется закон сохранение импульса. m1v1=(m1+m2)v2; Значит скорость сцепки после столкновения будет v2=m1v1/(m1+m2), а кинетическая энергия E=0.5(m1+m2)*((m1v1)/(m1+m2))^2; E=0.5(m1v1)^2 / (m1+m2); Сила трения равна F=U(m1+m2)g. Чтобы остановить сцепку, она должна совершить работу, равную кинетической энергии сцепки A=E. Так как работа равна силе, умноженной на перемещение A=FL, то путь до остановки сцепки равен L=E/F; (переведём скорость в м/с, разделив 12/3,6=3,(3) м/с) L=0.5(m1v1)^2 / (m1+m2)/(U(m1+m2)g); L=(0.5/Ug)*(m1v1)^2 /(m1+m2)^2; L=(0.5/(0.05*10))*(50000*3,33)^2 / (50000+30000)^2; L=2,3 м (округлённо).
Дано: не моё, но, думаю, верно v=0.5 м/с t₁=1.5 мин=90 с а=0,2 м/с² v₁=5 м/с Найти: t Решение: За полторы минуты юноша отошел от станции на расстояние Δs Δs=vt₁=0.5*90=45 (м) Если он нагнал поезд, то он пробежал путь s₁, а поезд путь s₂. Очевидно, что s₁-Δs=s₂ По формуле пути при равноускоренном движении s₂=at²/2 s₁-Δs=at²/2 v₁t-Δs=at²/2 at²/2-v₁t+Δs=0 Подставляя данные, получаем квадратное уравнение 0,2t²/2-5t+45=0 t²-50t+450=0 D=50²-4*450=700 √D≈26.5 t₁=(50-26.5)/2≈11.8 (c) Второе значение можем не находить, т.к. уже ясно, что он догонит поезд через 11,8 с ответ: да, сможет.