ответ:ответ: A=9,75 кДж.
L=5 м - длина балки
S=100 см²=0,01 м² - площадь поперечного сечения балки
ρ=7800 кг/м³ - удельная плотность стали
g≈10 м/с²=10 Н/кг - ускорение свободного падения
Определяем объем балки:
V=L•S=5•0,01=0,05 м³
Определяем массу балки:
m=ρ•V=7800•0,05=390 кг
Определяем силу тяжести балки:
P=m•g=390•10=3900 Н=3,9 кН
Полезная работа крана (против силы тяжести) при этом составит:
A=P•h=P•L/2=3,9•5/2=9,75 кДж
ответ: A=9,75 кДж.
Объяснение: Условие задачи нужно понимать так: кран поднимает балку из горизонтального положения в вертикальное. При этом перемещение центра тяжести балки (находящегося посередине балки) в вертикальном направлении составит половину длины балки: h=L/2
это была задача номер 6.
А ЭТО ЗАДАЧА НОМЕР 8 !!!
P=m*V, Ек=m*V^2/2
Подставляем значения
10=m*V, 20=m*V^2/2
10=m*V, m*V^2=40
Чтобы найти скорость, нужно
Вторую формулу разделить на первую
m*V^2 / (m*V) = 40/10
Масса и скорость с квадратом сокращаются
V=4 м/с
Природа света – электромагнитная. Одним из доказательств этого является совпадение величин скоростей электромагнитных волн и света в вакууме.
В однородной среде свет рас прямолинейно. Это утверждение называется законом прямолинейного рас света. Опытным доказательством этого закона служат резкие тени, даваемые точечными источниками света.
Геометрическую линию, указывающую направление рас света, называют световым лучом. В изотропной среде световые лучи направлены перпендикулярно волновому фронту.
Геометрическое место точек среды, колеблющихся в одинаковой фазе, называют волновой поверхностью, а множество точек, до которых дошло колебание к данному моменту времени, – фронтом волны. В зависимости от вида фронта волны различают плоские и сферические волны.
Для объяснения процесса рас света используют общий принцип волновой теории о перемещении фронта волны в предложенный голландским физиком Х.Гюйгенсом. Согласно принципу Гюйгенса каждая точка среды, до которой доходит световое возбуждение, является центром сферических вторичных волн, рас также со скоростью света. Поверхность, огибающая фронты этих вторичных волн, дает положение фронта действительно рас волны в этот момент времени.
Необходимо различать световые пучки и световые лучи. Световой пучок – это часть световой волны, переносящей световую энергию в заданном направлении. При замене светового пучка описывающим его световым лучом последний нужно брать совпадающим с осью достаточно узкого, но имеющего при этом конечную ширину (размеры поперечного сечения значительно больше длины волны), светового пучка.
Различают расходящиеся, сходящиеся и квазипараллельные световые пучки. Часто употребляют термины пучок световых лучей или световые лучи, понимая под этим совокупность световых лучей, описывающих реальный световой пучок.
Скорость света в вакууме c = 3 • 108 м/с является универсальной константой и не зависит от частоты. Впервые экспериментально скорость света была определена астрономическим методом датским ученым О.Рёмером. Более точно скорость света измерил А.Майкельсон.
Объяснение:
Розрізняють електроємність відокремленого провідника, системи провідників (зокрема, конденсаторів) .
Відокремленим називається провідник, розташований далеко від інших заряджених і незаряджених тел так, що вони не впливають на цей провідник ніякого впливу.
Електроємність відокремленого провідника — фізична величина, рівна відношенню електричного заряду відокремленого провідника до його потенціалу: ~C = \frac{q}{\varphi}. В СІ одиницею електроємність є фарад (Ф) .
1 Ф — це електроємність провідника, потенціал якого змінюється на 1 В при повідомленні йому заряду в 1 Кл. Оскільки 1 Ф дуже велика одиниця ємності, застосовують долішні одиниці: 1 пФ (пікофарад) = 10-12 Ф, 1 нФ (нанофарад) = 10-9 Ф, 1 мкФ (микрофарад) = 10-6 Ф і т. д.
Електроємність провідника не залежить від роду речовини і заряду, але залежить від його форми і розмірів, а також від наявності поблизу інших провідників або діелектриків. Дійсно, наблизимо до зарядженого шару, сполученого з электрометром, незаряженную паличку (рис. 1). Він покаже зменшення потенціалу кулі. Заряд q кулі не змінився, отже, збільшилася ємність. Це пояснюється тим, що всі провідники, розташовані поблизу зарядженого провідника, електризуються через вплив в полі його заряду і більш близькі до нього індуковані заряди протилежного знака послаблюють полі заряду q. Рис. 1
Якщо відокремленим провідником є заряджена сфера, потенціал поля на її поверхні ~\varphi = \frac{q}{4 \pi \varepsilon_0 \varepsilon R}, де R — радіус сфери, ε — діелектрична проникність середовища, в якій знаходиться провідник. Тоді ~C = \frac{q}{\varphi} = 4 \pi \varepsilon_0 \varepsilon R -
електроємність відокремленого сферичного провідника.
Зазвичай на практиці мають справу з двома провідниками. Розглянемо систему з двох різнойменно заряджених провідників з різницею потенціалів φ1 - φ2 між ними. Щоб збільшити різницю потенціалів між цими провідниками, необхідно виконати роботу проти сил електростатичного поля і перенести додатковий негативний заряд -q з позитивно зарядженого провідника на негативно заряджений (або заряд +q з негативно зарядженого провідника на позитивно заряджений) . При цьому збільшується абсолютне значення обох зарядів: як позитивного, так і негативного. Тому взаємної электроемкостью двох провідників називають фізичну величину, що чисельно дорівнює заряду, який потрібно перенести з одного провідника на інший, для того щоб змінити різниця потенціалів між ними на 1 В: ~C = \frac{q}{\varphi_1 - \varphi_2}.
Взаємна електроємність залежить від форми і розмірів провідників, від їх взаємного розташування і відносної діелектричної проникності середовища, що заповнює простір між ними.