Двигатель, развивающий мощность 4200 вт, имеет кпд 60%.сколько литров воды в час надо пропускать через систему двигателя, чтобы она нагревалась не более, чем на 5градусов цельсия.
1. две пружины, придвинув друг к другу, сдавили так, что вторая с жесткостью 300 нм укоротилась на 3 см. Какова жесткость первой резины ,если ее длина при этом уменьшилась на 5 см? k2=300 Н/м X2=3 см X1=5 см k1- ? F1=F2 k1*X1=k2*X2 k1=k2*x2/x1=300*3/5=180 Н/м
2. Брусок массой 0,5 кг начинает двигаться по гладкому столу с ускорением 6 м/с^2 под действием пружины жесткостью 250 н/м. на сколько
растягивается при этом пружина? Дано m=0,5 кг a=6 м/с2 k=250 Н/м x- ?
Допустим есть набор точек (хi;yi) допустим мы знаем что этот набор точек связан функциональной зависимостью y=y(x) но некоторые параметры нам точно неизвестны например нам известно что эта зависимость прямолинейная и имеет вид у=А*х+B нам нужно найти значения А и В чтобы набор точек (хi;yi) как можно ближе ложился рядом с прямой у=А*х+B метод наименьших квадратов состоит в том чтобы подобрать такие значения параметров А и В при которых отклонения yi от у были минимальны для вычислений берется сумма квадратов таких отклонений summ ((yi-y(xi))^2) =summ ((yi-(А*хi+B))^2) поэтому метод называется метод наименьших квадратов продолжу видно, что summ ((yi-(А*хi+B))^2) - какое-то положительное число, зависящее от А и В А и В ищут как точки минимума функции S(А;В) = summ ((yi-(А*хi+B))^2) для этого выписывают производную суммы квадратов по А и приравнивают ее нулю такжев ыписывают производную суммы квадратов по В и приравнивают ее нулю из двух получившихся уравнений выражают А и В
1) по методу наименьших квадратов можно искать не только линейную зависимость. 2) если известно что зависимость - нечетная, то ее ищут в виде у=А*х 3) можно искать зависимость в любом виде, даже в виде у=А )))
4200•0,4=1680 Вт
За час Q=Pt=1680•3600=6048000 Дж
Q=mc∆t
m=Q/c∆t =6048000/(4200•5)=288 кг. Это 288 литров, т к плотность воды 1 кг/л