Объяснение:
Рычаг.
Рычаг - это твёрдое тело, которое может вращаться вокруг неподвижной оси. На рис. 1) изображён рычаг с осью вращения O . К концам рычага (точкам A и B) приложены силы \vec F_{1} и \vec F_{2}. Плечи этих сил равны соответственно l_{1} и l_{2}.
Условие равновесия рычага даётся правилом моментов: F_{1} l_{1}=F_{2} l_{2}, откуда
\frac{\displaystyle F_{\displaystyle 1}}{\displaystyle F_{\displaystyle 2}}=\frac{\displaystyle l_{\displaystyle 2}}{\displaystyle l_{\displaystyle 1}}.
Рис. 1. Рычаг
Из этого соотношения следует, что рычаг даёт выигрыш в силе или в расстоянии (смотря по тому, с какой целью он используется) во столько раз, во сколько большее плечо длиннее меньшего.
Например, чтобы усилием 100 Н поднять груз весом 700 Н, нужно взять рычаг с отношением плеч 7 : 1 и положить груз на короткое плечо. Мы выиграем в силе в 7 раз, но во столько же раз проиграем в расстоянии: конец длинного плеча опишет в 7 раз большую дугу, чем конец короткого плеча (то есть груз).
Примерами рычага, дающего выигрыш в силе, являются лопата, ножницы, плоскогубцы. Весло гребца - это рычаг, дающий выигрыш в расстоянии. А обычные рычажные весы являются равноплечим рычагом, не дающим выигрыша ни в расстоянии, ни в силе (в противном случае их можно использовать для обвешивания покупателей).
В этой теме рассматривается случай, когда силы действуют вдоль оси бруса (осевое растяжение и сжатие). Изучение необходимо начинать с выяснения во о внутренних силовых факторах, действующих в сечениях стержня.
Применение метода сечений позволяет найти величину и направление равнодействующей внутренней (продольной) силы упругости в рассматриваемом сечении. Следует иметь в виду, что в поперечном сечении, перпендикулярном оси стержня, возникают только нормальные напряжения, которые, в силу гипотезы плоских сечений, равномерно распределены в плоскости сечения и определяются по формуле:
,
где N - внутренняя сила, A - площадь поперечного сечения.
Необходимо знать обе формы записи закона Гука, усвоить такие понятия, как модуль упругости при растяжении- сжатии, коэффициент Пуассона. Ознакомиться с методикой испытаний на растяжение, обработки диаграммы растяжения образца из малоуглеродистой стали с её характерными участками. При экспериментальном изучении растяжения и сжатия необходимо усвоить во определения характеристик прочности материала; пределов пропорциональности, упругости, текучести и прочности (временное сопротивление), учесть, что численные их значения условны, так как для их нахождения соответствующие силы делят на первоначальную площадь поперечного сечения испытываемого образца.
m=50кг
g=10м/с2
p=106,8 кПа=
=106800 Па
S-?
F-?
РЕШЕНИЕ:
F=mg=50×10=500H
p=F/S=>S=F/p=500/106800=0,0047 м2