Q₁ - заряд в точке А q₂ - заряд в точке В найти АС
Выберем систему отсчета связав ее начало с точкой А, тогда АВ = 1 м. В точке С напряженность результирующего поля равна нулю, т. к. векторы Еа и Ев равны и направлены в противоположные стороны Координата точки С равна х м, сл-но АС = х м Выразим модуль напряженности в точке С созданный зарядом q₁ Ea = k*|q₁|/AC² = k*q₁/x² Выразим модуль напряженности в точке С созданный зарядом q₂ Eb = k*|q₂|/CB² = k*q₂/(1-x)² Ea = Eb k*q₁/x² = k*q₂/(1-x)² q₁*(1-x)² = q₂*x² q₁*(1-2x+x²) = q₂*x², раскрываем скобки, преобразуем и получаем (q₂ - q₁)*x² + 2q₁*x - q₁ = 0, подставляем численные значения (6*10⁻¹⁰ - 2*10⁻¹⁰)*x² +2*2*10⁻¹⁰*x - 2*10⁻¹⁰ = 0, вычитаем и делим на 4*10⁻¹⁰ x² + x - 0,5 = 0 Находим дискриминант D = 1² - 4 * (-0,5) = 1 + 2 = 3 х₁ = (-1 + корень(3)) / 2 ≈ 0,4 м х₂ = (-1 - корень(3)) / 2 ≈ -1,4 м - не удовлетворяет условию задачи, т. к. в точке D векторы Еа и Ев сонаправлены (смотри чертеж) и напряженность результирующего поля в этой точке не будет равна нулю! ответ: в точке С на расстоянии 0,4 м от точки А напряженность электрического поля равна нулю.
Если считать, что плотность солёной воды больше, чем пресной, то думаю, что уровень повысится.
Если бы кубик был из солёной воды, то после таяния уровень не изменился бы, потому что получившийся объём растаявшей солёной воды, умноженный на плотность солёной воды равен массе куска солёного льда, равен объёму вытесняемой солёной воды пока кубик ещё плавает.
Но наш кубик из пресной воды, следовательно при той же массе (поэтому давая такой же подъём уровня в сосуде, как и солёный кубик) пресный растает в бОльший объём воды, чем растаял бы солёный, и это повысит уровень.
Может ошибаюсь, но думаю что так. Нужно будет попробовать при случае.
x = A·sin ωt
циклическая частота колебаний
ω = 2π/25 = 0.08π
ответ: х = 0,5 · sin 0.08πt