Температура 373 К = 100 °С, а это температура кипения воды. Следовательно, чтобы пар, взятый при температуре кипения, превратить в лед при температуре tк = –10 °С, необходимо четыре процесса:
1) сконденсировать пар в воду при температуре t0 = 100 °C, при этом выделится количество теплоты Q1 = m⋅L, где L = 2,3⋅106 Дж/кг — удельная теплота парообразования воды (табличная величина);
2) охладить воду от t0 = 100 °C до t1 = 0 °C (температура замерзания воды), при этом выделится Q2 = c1⋅m⋅(t0 – t1), где c1 = 4,19⋅103 Дж/(кг⋅К) — удельная теплоемкость воды (табличная величина);
3) заморозить воду в лед при температуре t1 = 0 °C, при этом выделится Q3 = m⋅λ, где λ = 330⋅103 Дж/кг — удельная теплота плавления льда (табличная величина);
4) охладить лед от t1 = 0 °C до tк = –10 °C, при этом выделится Q2 = c2⋅m⋅(t1 – tк), где c2 = 2,1⋅103 Дж/(кг⋅К) — удельная теплоемкость льда (табличная величина).
Всего пар отдаст количество теплоты, равное
Q = Q1 + Q2 + Q3 + Q4 = m⋅(L + c1⋅(t0 – t1) + λ + c2⋅(t1 – tк)),
Q = 9,2⋅10^6 Дж.
E1=E2; E1=k*(q1/(x^2)); E2=k*(q2/(R-x)^2);
k*(q1/(x^2))=k*(q2/(R-x)^2); ((R-x)/x)^2=q2/q1; R/x-1=(q2/q1)^0,5; R/x=1+(q2/q1)^0,5; x=R/(1+(q2/q1)^0,5);
Теперь рассмотрим силы, действующие на положительный заряд, например, на первый.
F1=k*((q1*q2)/(R^2)); F2=k*((q*q1)/(x)^2); F1=F2; k*((q1*q2)/(R^2))=k*((q*q1)/(x)^2); q/q2=(x/R)^2; q=q2*(x/R)^2;
q1=2*10^-9; q2=4*10^-9; R=0,6; x=0,6/(1+2^0,5)=0,6/2,41=0,249; ;
q=4*(10^-9)*(0,249/0,6)^2= 0,69*10^-9; Если рассмотреть силы, действующие на второй заряд, то величина отрицательного заряда будет той же самой. Источник: физика