Каждый день на протяжении всей своей жизни мы сталкивается с различными природными явлениями и физическими силами, к которым настолько привыкли, что порой не замечаем и не задумываемся на природой их происхождения, над их пользой или вредом. Одной из таких сил является сила трения, о пользе которой я и хочу поговорить. В своем повествовании я защищаю силу трения, поскольку примеров ее пользы огромное количество, и перечислять их можно до бесконечности. Я хочу назвать лишь несколько из НИХ
Прежде всего, сила трения нам перемещаться по земле. Если бы не было трения, то мы не могли бы сдвинуться с места даже на сантиметр, а если бы это и удалось, до не могли бы после этого остановиться. Даже самая гладкая на первый взгляд поверхность имеет шероховатости, которые и нам перемещаться и останавливаться.
Силу трения можно уменьшить в несколько раз, если между трущимися деталями ввести смазку. Так мы смазываем лыжи, когда собираемся на них кататься, так смазываются детали в различных механизмах, так мы добиваемся меньшего износа деталей, на которые воздействует сила, получившая название сила трения скольжения.
А вот при движении велосипедов, автомобилей и поездов возникает сила трения качения. И чем меньше эта сила, тем легче будет велосипедисту разогнать свой велосипед, тем быстрее будет скорость
/
Объяснение:
Пусть векторные поля являются потенциальными:
Тогда и результирующее поле
является потенциальным, а его потенциал равен сумме потенциалов полей :
Благодаря этому свойству проблема нахождения результирующего векторного поля E сводится к проблеме суммирования скалярных величин с последующим нахождением градиента полученной функции, что существенно сокращает трудоемкость вычислений.
Пусть скалярное поле является потенциалом векторного поля A. Тогда криволинейный интеграл по дуге BC не зависит от пути интегрирования, а определяется только положением начальной и конечной точек и
Действительно,
и, следовательно,
Потенциал в произвольной точке может быть вычислен по формуле
В качестве пути интегрирования проще всего выбрать ломаную, соединяющую точки B и M, участки которой расположены параллельно координатным осям.
Следствие. Если положения начальной и конечной точек интегрирования совпадают, то интеграл по замкнутому контуру L равен нулю: