R₁ = 6356,8 км - полярный радиус;
R₂ = 6378,1 км - экваториальный радиус;
M = 5,97*10²⁴ кг - масса Земли;
g₁ = G * M / R₁² = 6,67*10⁻¹¹ Н*м²/кг² * 5,97*10²⁴ кг / (6356,8*10³ м)² ≈ 9,854 м/с²
g' = G * M / R₂² = 6,67*10⁻¹¹ Н*м²/кг² * 5,97*10²⁴ кг / (6378,1*10³ м)² = 9,789 м/с²
a = ω² * R₂ - центростремительное ускорение на экваторе
а = (2 *π рад / 86400 с)² * 6378,1*10³ м ≈ 0,034 м/с²
g₂ = g' - a = 9,789 м/с² - 0,034 м/с² = 9,755 м/с²
(g₁ - g₂) * 100 % / g₁ = (9,854 м/с² - 9,755 м/с²) * 100 % / 9,854 м/с² ≈ 1,00 %
Ускорение на полюсе примерно на 1% больше, чем на экваторе.
Объяснение:
R₁ = 6356,8 км - полярный радиус
R₂ = 6378,1 км - экваториальный радиус
M = 5,97*10²⁴ кг - масса Земли
Для решения данный задачи нужно учесть значение радиусов Земли, а также факт вращения Земли вокруг своей оси. При этом значение экваториального ускорения будет уменьшаться на величину центростремительного ускорения на экваторе.
g₁ = G * M / R₁² = 6,67*10⁻¹¹ Н*м²/кг² * 5,97*10²⁴ кг / (6356,8*10³ м)² ≈ 9,854 м/с²
g' = G * M / R₂² = 6,67*10⁻¹¹ Н*м²/кг² * 5,97*10²⁴ кг / (6378,1*10³ м)² = 9,789 м/с²
За сутки Земля совершает один оборот => ω = 2 *π рад / 86400 с - угловая скорость обращения Земли
a = ω² * R₂ - центростремительное ускорение на экваторе
а = (2 *π рад / 86400 с)² * 6378,1*10³ м ≈ 0,034 м/с²
g₂ = g' - a = 9,789 м/с² - 0,034 м/с² = 9,755 м/с²
(g₁ - g₂) * 100 % / g₁ = (9,854 м/с² - 9,755 м/с²) * 100 % / 9,854 м/с² ≈ 1,00 %
Ускорение на полюсе приблизительно на 1 % больше чем на экваторе
Объяснение:
Дано:
m1=1 кг
m2=3 кг
v1=3 м/с
v2=7 м/с
p-?
Формула:
p=m*v
m=m1+m2
m1*v1+m2*v2=(m1+m2)*v
v=(m1*v1+m2*v2)/m
p=m1*v1+m2*v2
р=1 кг*3 м/с+3 кг*7 м/с=24 кг*м/с