Дано:
4t+3t2 - уравнение движения тела.
Требуется определить:
v0 (м/с) - начальную скорость тела;
a (м/с2) - ускорение тела;
описать характер движения тела и найти зависимость скорости от времени.
Чтобы определить зависимость скорости от времени, необходимо выполнить производную первой степени уравнения движения:
v(t) = (4t+3t2) = 14*t
Подставив в зависимость скорости от времени t = 0 (начальный момент времени), определим начальную скорость:
v0 = 14*0 = 14 м/с.
Найдем ускорение тела, выполнив производную первой степени зависимости скорости от времени:
a = v(t)' = (14 * t) = 14 м/с2.
Так как ускорение положительное, то тело движется равноускоренно.
l1 = 20 см = 0,2 м
F1= 500 H
l2 = 1 м
Найти m2
Решение
F2=m2g ; m2 = F2/g
F1/F2=l2/l1; F2= F1*l1/l2. Отсюда m2 = F1*l1/l2g= 500*0.2/(1*10) = 10 кг