электрический ток, текущий в замкнутом контуре, создает вокруг себя магнитное поле, индукция которого, по закону био — савара—лапласа (см. (110. пропорциональна току. сцепленный с контуром магнитный поток ф поэтому пропорционален току iв контуре:
ф=li, (126.1)
где коэффициент пропорциональности l называется индуктивностью контура.
при изменении силы тока в контуре будет изменяться также и сцепленный с ним магнитный поток; следовательно, в контуре будет индуцироваться э.д.с. возникновение э.д.с. индукции в проводящем контуре при изменении в нем силы тока называетсясамоиндукцией.
из выражения (126.1) определяется единица индуктивности генри (гн): 1 гн — индуктивность такого контура, магнитный поток самоиндукции которого при токе в 1 а равен 1 вб:
1 гн=1 вб/а=1в•с/а.
рассчитаем индуктивность бесконечно длинного соленоида. согласно (120.4), полный магнитный поток через соленоид
(потокосцепление) равен 0(n2i/l)s. подставив это выражение в формулу (126.1), получим
т. е. индуктивность соленоида зависит от числа витков соленоида n, его длины l, площади s и магнитной проницаемости вещества, из которого изготовлен сердечник соленоида.
можно показать, что индуктивность контура в общем случае зависит только от формы контура, его размеров и магнитной проницаемости той среды, в которой он находится. в этом смысле индуктивность контура — аналог электрической емкости уединенного проводника, которая также зависит только от формы проводника, его размеров и диэлектрической проницаемости среды (см. §93).
применяя к явлению самоиндукции закон фарадея (см. (123. получим, что э.д.с. самоиндукции
если контур не деформируется и магнитная проницаемость среды не изменяется (в дальнейшем будет показано, что последнее условие выполняется не всегда), то l=const и
где знак минус, обусловленный правилом ленца, показывает, что наличие индуктивности в контуре приводит к замедлению изменения тока в нем.
если ток со временем возрастает, то
di/dt> 0 и ξs< 0, т. е. ток самоиндукции
направлен навстречу току, обусловленному внешним источником, и тормозит его возрастание. если ток со временем убыва-
198
ет, то di/dt< 0 и ξs> 0, т. е. индукционный
ток имеет такое же направление, как и убывающий ток в контуре, и замедляет его убывание. таким образом, контур, обладая определенной индуктивностью, приобретает электрическую инертность, заключающуюся в том, что любое изменение тока тормозится тем сильнее, чем больше индуктивность контура.
Объяснение:
Я́дерная реа́кция — это процесс взаимодействия атомного ядра с другим ядром или элементарной частицей, который может сопровождаться изменением состава и строения ядра. Последствием взаимодействия может стать деление ядра, испускание элементарных частиц или фотонов. Кинетическая энергия вновь образованных частиц может быть гораздо выше первоначальной, при этом говорят о выделении энергии ядерной реакцией.
Впервые ядерную реакцию наблюдал Резерфорд в 1919 году, бомбардируя α-частицами ядра атомов азота. Она была зафиксирована по появлению вторичных ионизирующих частиц, имеющих пробег в газе больше пробега α-частиц и идентифицированных как протоны. Впоследствии с камеры Вильсона были получены фотографии этого процесса.
По механизму взаимодействия ядерные реакции делятся на два вида:
реакции с образованием составного ядра, это двухстадийный процесс, протекающий при не очень большой кинетической энергии сталкивающихся частиц (примерно до 10 МэВ).
прямые ядерные реакции, проходящие за ядерное время, необходимое для того, чтобы частица пересекла ядро. Главным образом такой механизм проявляется при больших энергиях бомбардирующих частиц.
Если после столкновения сохраняются исходные ядра и частицы и не рождаются новые, то реакция является упругим рассеянием в поле ядерных сил, сопровождается только перераспределением кинетической энергии и импульса частицы и ядра-мишени и называется потенциальным рассеянием[1][2].
1) Аиплитудное значение тока Im=200, omega=2πf=15, f=15/6.28=2.39 Гц, Т=1/f=0.42 c
2) Em=110, E(1/600)=110sin(100*π/600)= 110sin(π/6)=55
omega=2πf=100π, f=50Гц, Т=0.02 с