2. Проводники и диэлектрики в электрическом поле. Конденсаторы.
Напряженность электрического поля у поверхности проводника в вакууме:
0
En
ε
σ
=== ,
где σ – поверхностная плотность зарядов на проводнике, напряженность поля направлена
по нормали к поверхности проводника.
Энергия заряженного проводника:
W === qϕ ,
где q – заряд проводника, φ – потенциал проводника.
В однородном изотропном диэлектрике, заполняющем все пространство:
ε
E0
E
r
r
=== ,
где E0
r
– поле, созданное той же системой зарядов в вакууме, ε – диэлектрическая
проницаемость диэлектрика.
Вектор D
r
электрического смещения:
D 0E P
r r r
=== ε +++ ,
где P
r
- вектор поляризации. Для изотропных диэлектриков:
P 0E
r r
=== χε , D 0E
r r
=== εε , χ === ε +++ 1 ,
где χ – диэлектрическая восприимчивость.
Поток вектора поляризации P
r
:
∫∫∫
SdP === −−−q′′′
r r
,
где интегрирование ведется по произвольной замкнутой поверхности, q′′′- алгебраическая
сумма связанных зарядов внутри этой поверхности.
Теорема Гаусса для диэлектриков:
∫∫∫
SdD === q
r r
,
где интегрирование ведется по произвольной замкнутой поверхности, q - алгебраическая
сумма сторонних зарядов внутри этой поверхности.
Условия на границе двух диэлектриков для нормальных и тангенциальных
компонент векторов E,D,P
r r r
:
−−− === −−−σ ′′′ P n2 P n1
, D n2 −−− D n1 === σ , E2τ === E1τ
,
где σ ′′′ и σ - поверхностные плотности связанных и сторонних зарядов, вектор нормали
направлен из среды 1 в среду 2.
Емкость уединенного проводника:
ϕ
q
С = ,
где ϕ - потенциал проводника, q – заряд проводника...)
h₀ = 9,62 м;
V₀ = 5 м/с.
t, V - ?
Решение:В данной задаче следует рассматривать три момента:
1) Момент броска мяча, V₀ = 5 м/с, h₀ = 9,62 м.
2) Момент, когда мяч достигает верхней точки, V' = 0 м/c,
3) Момент приземления, h = 0 м, t - ?
Время полёта поделим на 2 части: время от момента (1) до момента (2) (пусть t₁) и далее от момента (2) до (3) (пусть t₂). Значит, t = t₁ + t₂.
Время t₁ определим из уравнения зависимости скорости от времени:
Перед нахождением времени t₂ нужно найти максимальную высоту, на которой мячик остановится, перед тем как начать падать. Для этого воспользуемся уравнением движения:
С текущими данными мы сможем найти скорость перед приземлением, используя следующую формулу и учитывая, что V' = 0:
Теперь, зная максимальную высоту, найдём время t₂ через уравнение движения:
Таким образом, t = 0,5 + 1,47 = 1,97 (c).
ответ: 1,97 с; 14,74 м/с.