Составим уравнение для пути s за последнюю секунду как разность расстояний, пройденных телом при свободном падении без начальной скорости (υо= 0 ) за время t и за время t - ∆t (по условию ∆t= 1 с): s = gt2/2 - g(t - ∆t)2/2. (1) из этого уравнения находим t : 2s = gt2- g(t - ∆t)2, 2s/g = t2- t2+ 2t∆t - ∆t2 => t = s/g∆t+ ∆t/2. t = 25 м/10 м/с2 ∙1 с + 1/2 с = 3 с. и подставляем его в формулу h = gt2/2. (2) вычислим: h = 10 м/с2∙(3 с)2/2 = 45 м. ответ: 45 м.
Обозначим угол наклона как x. Разложим силу тяжести на нормальную N (прижимает тело к поверхности) и тангенциальную T (толкает тело вдоль поверхности) составляющие. N=mg cos(x); T=mg sin(x); Сила трения скольжения равна f=kN, где k - коэффициент трения. Если тело движется без ускорение, значит сумма сил, действующих на него, равна нулю. Нас интересуют только силы, направленные вдоль поверхности. mg*sin(x)-kmg*cos(x)=0; разделим уравнение на mg*cos(x); sin(x)/cos(x)-k=0; tg(x)=k; x=arctg(k); x=arctg(0.7); x=0.6107 рад. x=35 градусов (округлённо)