Выделим повторяющийся элемент схемы. В данном случае таким элементом будет такая схема (рис. ) Так как цепочка бесконечна, то при удалении первого элемента сопротивление схемы не изменится. Обозначим общее сопротивление цепочки через RО. Тогда, при удалении первого элемента сопротивление оставшейся цепочки будет также RО, и вместо бесконечной цепочки можно рассматривать такую схему (рис. )
Сопротивление между точками А и В такой схемы:
RAB=R+(R*RO)/(R+RO)
Так как RAB=RO
R=R+(R*RO)/(R+RO)
Решаем полученное уравнение относительно неизвестной величины RО. После приведения к общему знаменателю и группировки подобных членов получим квадратное уравнение
R^2O-RRO-R^2=0
Решая относительно RО, получим
RO=
RO=
Отрицательный корень отбрасываем, т.к. RО>0.
Подставляя значение R=2 Ом, получаем ответ
Выделим повторяющийся элемент схемы. В данном случае таким элементом будет такая схема (рис. ) Так как цепочка бесконечна, то при удалении первого элемента сопротивление схемы не изменится. Обозначим общее сопротивление цепочки через RО. Тогда, при удалении первого элемента сопротивление оставшейся цепочки будет также RО, и вместо бесконечной цепочки можно рассматривать такую схему (рис. )
Сопротивление между точками А и В такой схемы:
RAB=R+(R*RO)/(R+RO)
Так как RAB=RO
R=R+(R*RO)/(R+RO)
Решаем полученное уравнение относительно неизвестной величины RО. После приведения к общему знаменателю и группировки подобных членов получим квадратное уравнение
R^2O-RRO-R^2=0
Решая относительно RО, получим
RO=
RO=
Отрицательный корень отбрасываем, т.к. RО>0.
Подставляя значение R=2 Ом, получаем ответ
F=250H
∆l=0,4см
F2=500H
k=k2
g≈10H/кг
∆l2=?
∆l2=F2/k*m
k=F/∆l*m
m=F/g
∆l2=F2/(F/((∆l*(F/g))*F2/g)
∆l2=500/(250/(0,4*(250/10)))*500/10=500/((0,4*25)*50)=500/(10*50)=1см