Если мы пренебрегаем трением, то вдоль поверхности наклонной плоскости (параллельно ей) на тело действует только проекция силы тяжести. Значение данной проекции: F=m*g*sinα. Согласно второго закона Ньютона, эта сила определяет ускорение тела вдоль поверхности наклонной плоскости: a=F/m. Подставим F, получим: a=m*g*sinα/m=g*sinα.Длина пути : S=h/sinα (из прямоугольного треугольника). Также, если считать, что тело начинает соскальзывать из состояния покоя, то можно длину пути выразить как: S=a*t²/2. Выразим отсюда время соскальзывания: t=√((2*S)/a). Подставляем выражение для ускорения, полученное из второго закона Ньютона: t=√((2*S)/(g*sinα))=
Подставив выражение для S, получим: t=√((2*h)/(g*sin²α))=√((2*10)/(10*0,5*0,5))=√(20/2,5)=√8=2√2 сек=2,82 сек.
m1=2 кг μ=0.2 m2=4 кг a1=2 м/с² a2=?
===
T-μ*m1*(g+a1)=m1*a2
m2*(g+a1)-T=m2*a2
a2=m1*(g+a1)*(1-μ)/(m1+m2)=2*(10+2)*(1-0.2)/(2+4)=3.2 м/с²