Движение тела, брошенного горизонтально или под углом к горизонту.
Движение тела, брошенного горизонтально или под углом к горизонту.
Это движение в плоскости, поэтому для описания движения необходимо 2 координаты.
Считаем, что движение происходит вблизи поверхности Земли, поэтому ускорение тела – ускорение свободного падения (a = g).
Так как мы пренебрегаем сопротивлением воздуха, то ускорение направлено только к поверхности Земли (g) – вдоль вертикальной оси (y), вдоль оси х движение равномерное и прямолинейное.
Движение тела, брошенного горизонтально.
Выразим проекции скорости и координаты через модули векторов.
Для того чтобы получить уравнение траектории, выразим время tиз уравнения координаты x и подставим в уравнение для y:
- между координатами квадратичная зависимость, траектория – парабола!
Движение тела, брошенного под углом к горизонту.
Порядок решения задачи аналогичен предыдущей.
Решим задачу для случая х0=0 и y0=0.
Движение тела, брошенного под углом к горизонту.
Докажем, что траекторией движения и в этом случае будет парабола. Для этого выразим координату Y через X (получим уравнение траектории):
.
Мы получили квадратичную зависимость между координатами. Значит траектория - парабола.
Найдем время полета тела от начальной точки до точки падения. В точке падения координата по вертикальной оси у=0. Следовательно, для решения этой задачи необходимо решить уравнение . Оно будет иметь решение при t=0 (начало движения) и
Время полета:
Зная время полета, найдем максимальное расстояние, которое пролетит тело:
Дальность полета:
Из этой формулы следует, что:
- максимальная дальность полета будет наблюдаться при бросании тела (при стрельбе, например) под углом 450;
- на одно и то же расстояние можно бросить тело (с одинаковой начальной скоростью) двумя т.н. навесная и настильная траектории.
Используя то, что парабола – это симметричная кривая, найдем максимальную высоту, которой может достичь тело.
Время, за которое тело долетит до середины, равно:
Время подъема:
v = (v1 + v2)/ (1 + v1*v2/c (кв) ). Вычислим: учитывая что v1 = v2 = v; : v (отн. ) = (v+ v)/ (1 + v*v./с*с) = 2vс ( кв) /(с (кв) + м (кв) ) = 2*0,8с*с/ (с (кв) + 0,64с (кв) ) = 2*0,8/(1 +0,64) = 1,6/ 1,64 = 0,98 с; Это и можно считать ответом v = 0,98c. Ни при каких скоростях относительная скорость не может превышать скорости света с = 3*10(в 8 ст) м/с. ответ можно выразить и в м/с . v = 0,98*3*10(в 8 ст) м/с = 294 000 000 м/с = 294 000 км/с.