Вот на примере
Объяснение:
Решение. Так как пуля застревает в шаре, то применять сразу закон сохранения энергии нельзя. Рассмотрим вначале процесс столкновения пули и шара (неупругий удар), затем движение системы шар-пуля.
Процесс столкновения пули и шара (рис. 1). Пусть M —масса шара. Так как удар неупругий, то для нахождения скорости системы шар-пуля воспользуемся законом сохранения импульса:
m⋅υ0→=(m+M)⋅υ⃗ 1,
0Х: m⋅υ0 = (m + M)⋅υ1
или
υ1=m⋅υ0m+M.(1)
Процесс движения системы мяч-пуля. Воспользуемся законом сохранения энергии. За нулевую высоту примем высоту пола (рис. 2).
Полная механическая энергия системы тел в начальном состоянии равна
W0=(m+M)⋅υ212+(m+M)⋅g⋅H.
Полная механическая энергия системы тел в конечном состоянии
W=(m+M)⋅υ222.
Так как на тело не действует внешняя сила (сопротивлением воздуха пренебречь), то выполняется закон сохранения механической энергии. Запишем его с учетом уравнения (1):
(m+M)⋅υ212+(m+M)⋅g⋅H=(m+M)⋅υ222,
υ2=υ21+2g⋅H−−−−−−−−−√=(m⋅υ0m+M)2+2g⋅H−−−−−−−−−−−−−−−−−√.
A=E2-E1
mgh=(mV2^2)/2-(mV1^2)/2
mgh=mV2^2/2
gh=V2^2/2
V2^2=2gh
V2=√gh
m1=1 кг m2=0.2 кг
Из закона сохранения импульса
0=mV(raketu)-m2V(gazov)
V(gazov) =m/m2 *V(racetu)= (m/m2)*√2gh
V(gazov)=(m1-m2)/m2 *√2gh
V(gazov=(1-0.2)/0.2 *√2*10*500=400 м/с
ответ 400 м/c