Тут без чертежа никак: рисуем наклонную плоскость, на ней тело и расставляем силы: сила тяги вдоль наклонной плоскости вверх, сила трения вдоль плоскости, но вниз, сила тяжести приложена к центру масс тела и направлена ВЕРТИКАЛЬНО вниз, сила реакции опоры приложена к центру масс тела но ВДОЛЬ ПЕРПЕНДИКУЛЯРА К НАКЛОННОЙ ПЛОСКОСТИ. ось ОХ направляем вдоль наклонной плоскости вверх, ось ОУ вдоль вектора силы реакции опоры вверх, угол α=30 угол у основания наклонной плоскости. Теперь нам надо записать 2 закон Ньютона в векторном виде: → → → → → → Fтяг+Fтр+mg+N=ma, теперь нам надо найти проекции этих сил на координатные оси ОХ: Fтяг-Fтр - mg sinα=ma (сила трения имеет отрицательную проекцию, тк. она направлена "против" оси ОХ, mg отрицательна т.к. идем от начала проекции к концу против направления оси, а если опустить перпендикуляр из конца вектора на ОХ то получим, что угол 30 будет лежать напротив проекции, т.е сам вектор при этом будет равен mg sinα) Теперь аналогично находим проекции всех векторов на ОУ: 0+0-mg cosα+N=0 отсюда находим, что N=mg cosα, вспоминаем, что Fтр=μN=μ mg cosα, осталось все собрать в кучу, получаем: Fтяг- μ mg cosα - mg sinα=ma отсюда a=(Fтяг -μ mg cosα -mg sinα)/m=(7000-0,1*1000*10*√3/2 - 1000*10*1/2)/1000=(6150-5000)/1000=1150/1000=1,15 м/с.кв.
Воспользуемся законом сохранения импульса. до прыжка соломинка и кузнечик находились в покое относительно земли, следовательно, результирующий импульс этой системы равнялся нулю. в соответствии с законом сохранения импульса он не может измениться после прыжка. если скорость соломинки после прыжка равна u, скорость кузнечика задана относительно земли, а угол, который она образует с поверхностью земли, равен , то закон сохранения импульса в проекции на горизонтальное направление дает . (1.3.5) очевидно, что за время полета кузнечика общее перемещение его и соломинки должно равняться длине соломинки l, следовательно, . (1.3.6) чтобы исключить из (1.3.7) время, воспользуемся тем, что время подъема кузнечика до верхней точки траектории равно половине времени полета. так как в верхней точке вертикальная скорость обращается в ноль, находим . (1.3.7) подставляя (1.3.7) в (1.3.6), получаем , что с учетом (1.3.5) дает . таким образом, для скорости кузнечика получаем выражение . очевидно, скорость будет минимальной, если . тогда окончательно .
кпд= m*g*h/F*L=0.49*9,8*0,14/4,1*0,55=0,3=30%