М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Ученик12090
Ученик12090
31.01.2020 07:55 •  Физика

10 в колебательном контуре в одном случае заменили емкость на батарею из n последовательно соединенных таких же конденсаторов, а в другом - на n параллельно соединенных. найти отношение частот ν1: ν2: ν3 свободных колебаний в этих контурах и указать контуры с максимальной и минимальной частотами.

👇
Ответ:
цукенг7ш8
цукенг7ш8
31.01.2020

Частота св.кол. f=1/[2π√(LC)], пусть C1=С, тогда С2=С/n (посл-но), С3=nC (пар-но), аккуратно 4-этажные отношения дробей: f1/f2= 1/√n, f1/f3=√n., f3(min)<f1<f2(max) -f1 средний член.

Обозначив 1-2-3 порядок увеличения, запишем v1:v2:v3=1:√n:n

4,5(66 оценок)
Ответ:
mmmmmmiiiiiinnn
mmmmmmiiiiiinnn
31.01.2020
Чтобы ответить на данный вопрос, нам необходимо использовать ряд формул и принципов, связанных с колебательными контурами.

Для начала, давайте рассмотрим ситуацию, когда емкость заменяется на батарею из n последовательно соединенных конденсаторов. Обозначим исходную емкость как C.

1) При замене емкости на последовательно соединенные конденсаторы, общая емкость Ct в таком контуре будет равна сумме емкостей каждого конденсатора:

Ct = nC

Теперь нам необходимо найти отношение частот свободных колебаний в этом контуре, обозначенное как ν1.

Для свободных колебаний в колебательном контуре, частота определяется формулой:

ν1 = 1 / (2π√(L·C))

где L - индуктивность контура, C - емкость контура.

2) Теперь рассмотрим ситуацию, когда емкость заменяется на n параллельно соединенных конденсаторов. В этом случае общая емкость Cp в контуре будет равна обратной сумме обратных емкостей каждого конденсатора:

1 / Cp = 1 / C + 1 / C + ... + 1 / C (n раз)

Сократив общий знаменатель, мы получим:

1 / Cp = n / C

Cp = C / n

Теперь нам необходимо найти отношение частот свободных колебаний в этом контуре, обозначенное как ν2.

Зная новое значение емкости Cp, мы можем использовать ту же формулу для определения частоты колебаний:

ν2 = 1 / (2π√(L·Cp))

сокращая, получаем:

ν2 = 1 / (2π√(L·C / n))

3) Наконец, мы хотим найти отношение частот свободных колебаний в исходном колебательном контуре и контуре с единичной емкостью, обозначенное как ν3.

При замене емкости на единичную, общая емкость в этом контуре будет равна 1:

Ct = 1

Используя формулу для определения частоты колебаний, мы получаем:

ν3 = 1 / (2π√(L·Ct))

сокращая, получаем:

ν3 = 1 / (2π√L)

Итак, мы нашли формулы для определения каждой из трех частот колебаний ν1, ν2 и ν3. Теперь осталось только подставить значения и вычислить отношения.

Найдем отношение ν1: ν2: ν3:

ν1 / ν2 = (1 / (2π√(L·C))) / (1 / (2π√(L·C / n)))
= √(L·C / n) / √(L·C)
= √((L·C) / (n·L·C))
= √(1 / n)
= 1 / √n

ν1 / ν3 = (1 / (2π√(L·C))) / (1 / (2π√L))
= √L / √(L·C)
= √(L / (L·C))
= 1 / √C

Поэтому, отношение ν1: ν2: ν3 равно (1 / √n) : 1 : (1 / √C).

Теперь давайте определим, какие контуры имеют максимальную и минимальную частоты.

Максимальная частота будет у контура с наименьшим значением емкости. Следовательно, контур с n параллельно соединенными конденсаторами имеет максимальную частоту.

Минимальная частота будет у контура с наибольшим значением емкости. Следовательно, контур с единичной емкостью имеет минимальную частоту.

Таким образом, контур с n параллельно соединенными конденсаторами имеет максимальную частоту, а контур с единичной емкостью имеет минимальную частоту.
4,4(3 оценок)
Проверить ответ в нейросети
Это интересно:
Новые ответы от MOGZ: Физика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ