Какой выйгрыш в силе можно получить на гидравлической машине ,у которой площадь поперечного сечения малого поршня 2 дм^2,а большего поршня -50дм^2.подробно с дано и формулами
Для вычисления среднего давления надо знать среднюю скорость молекул (точнее, среднее значение квадрата скорости). Это не простой вопрос. Вы привыкли к тому, что скорость имеет каждая частица. Средняя же скорость молекул зависит от движения всех частиц. Средние значения. С самого начала нужно отказаться от попыток проследить за движением всех молекул, из которых состоит газ. Их слишком много, и движутся они очень сложно. Нам и не нужно знать, как движется каждая молекула. Мы должны выяснить, к какому результату приводит движение всех молекул газа. Характер движения всей совокупности молекул газа известен из опыта. Молекулы участвуют в беспорядочном (тепловом) движении. Это означает, что скорость любой молекулы может оказаться как очень большой, так и очень малой. Направление движениямолекул беспрестанно меняется при их столкновениях друг с другом. Скорости отдельных молекул могут быть любыми, однако среднее значение модуля этих скоростей вполне определенное. Точно так же рост учеников в классе неодинаков, но его среднее значение - определенное число. Чтобы это число найти, надо сложить рост отдельных учеников и разделить эту сумму на число учащихся. Среднее значение квадрата скорости. В дальнейшем нам понадобится среднее значение не самой скорости, а квадрата скорости. От этой величины зависит средняя кинетическая энергия молекул. А средняя кинетическая энергия молекул, как мы вскоре убедимся, имеет очень большое значение во всей молекулярно-кинетической теории. Обозначим модули скоростей отдельных молекул газа через . Среднее значение квадрата скорости определяется следующей формулой: где N - число молекул в газе. Но квадрат модуля любого вектора равен сумме квадратов его проекций на оси координат ОХ, ОY, ОZ. Поэтому Средние значения величин можно определить с формул, подобных формуле (8.9). Между средним значением и средними значениями квадратов проекций существует такое же соотношение, как соотношение (8.10): Действительно, для каждой молекулы справедливо равенство (8.10). Сложив такие равенства для отдельных молекул и разделив обе части полученного уравнения на число молекул N, мы придем к формуле (8.11). Внимание! Так как направления трех осей ОХ, ОY и OZ вследствие беспорядочного движения молекул равноправны, средние значения квадратов проекций скорости равны друг другу: Видите, из хаоса выплывает определенная закономерность. Смогли бы вы это сообразить сами? Учитывая соотношение (8.12), подставим в формулу (8.11) вместо и . Тогда для среднего квадрата проекции скорости получим: т. е. средний квадрат проекции скорости равен 1/3 среднего квадрата самой скорости. Множитель 1/3 появляется вследствие трехмерности пространства и соответственно существования трех проекций у любого вектора. Скорости молекул беспорядочно меняются, но средний квадрат скорости вполне определенная величина.
??? 1. Всегда ли равноправны средние значения проекций скорости движения молекул? 2. Чему равно среднее значение проекции скорости молекул на ось ОХ?
Г.Я.Мякишев, Б.Б.Буховцев, Н.Н.Сотский, Физика 10 класс Полный список тем по физике, календарный план по всем предметам согласно школьной программы, домашнее задание, курсы и задание по физике для 10 класса
4. 1закон Существуют такие системы отсчета, называемые инерциальными, относительно которых свободная материальная точка сохраняет величину и направление своей скорости неограниченно долго. 2закон В инерциальной системе отсчета ускорение, которое получает материальная точка, прямо пропорционально равнодействующей всех приложенных к ней сил и обратно пропорционально её массе. 3закон Материальные точки попарно действуют друг на друга с силами, имеющими одинаковую природу, направленными вдоль прямой, соединяющей эти точки, равными по модулю и противоположными по направлению: 5. Движение тел можно описывать в различных системах отсчета. С точки зрения кинематики все системы отсчета равноправны. Однако кинематические характеристики движения, такие как траектория, перемещение, скорость, в разных системах оказываются различными. Величины, зависящие от выбора системы отсчета, в которой производится их измерение, называют относительными. К примеру скорость авто относительно скорости автобуса и относительно поверхности земли будут разными
Средние значения. С самого начала нужно отказаться от попыток проследить за движением всех молекул, из которых состоит газ. Их слишком много, и движутся они очень сложно. Нам и не нужно знать, как движется каждая молекула. Мы должны выяснить, к какому результату приводит движение всех молекул газа.
Характер движения всей совокупности молекул газа известен из опыта. Молекулы участвуют в беспорядочном (тепловом) движении. Это означает, что скорость любой молекулы может оказаться как очень большой, так и очень малой. Направление движениямолекул беспрестанно меняется при их столкновениях друг с другом.
Скорости отдельных молекул могут быть любыми, однако среднее значение модуля этих скоростей вполне определенное. Точно так же рост учеников в классе неодинаков, но его среднее значение - определенное число. Чтобы это число найти, надо сложить рост отдельных учеников и разделить эту сумму на число учащихся.
Среднее значение квадрата скорости. В дальнейшем нам понадобится среднее значение не самой скорости, а квадрата скорости. От этой величины зависит средняя кинетическая энергия молекул. А средняя кинетическая энергия молекул, как мы вскоре убедимся, имеет очень большое значение во всей молекулярно-кинетической теории.
Обозначим модули скоростей отдельных молекул газа через . Среднее значение квадрата скорости определяется следующей формулой:
где N - число молекул в газе.
Но квадрат модуля любого вектора равен сумме квадратов его проекций на оси координат ОХ, ОY, ОZ. Поэтому
Средние значения величин можно определить с формул, подобных формуле (8.9). Между средним значением и средними значениями квадратов проекций существует такое же соотношение, как соотношение (8.10):
Действительно, для каждой молекулы справедливо равенство (8.10). Сложив такие равенства для отдельных молекул и разделив обе части полученного уравнения на число молекул N, мы придем к формуле (8.11).
Внимание! Так как направления трех осей ОХ, ОY и OZ вследствие беспорядочного движения молекул равноправны, средние значения квадратов проекций скорости равны друг другу:
Видите, из хаоса выплывает определенная закономерность. Смогли бы вы это сообразить сами?
Учитывая соотношение (8.12), подставим в формулу (8.11) вместо и . Тогда для среднего квадрата проекции скорости получим:
т. е. средний квадрат проекции скорости равен 1/3 среднего квадрата самой скорости. Множитель 1/3 появляется вследствие трехмерности пространства и соответственно существования трех проекций у любого вектора.
Скорости молекул беспорядочно меняются, но средний квадрат скорости вполне определенная величина.
???
1. Всегда ли равноправны средние значения проекций скорости движения молекул?
2. Чему равно среднее значение проекции скорости молекул на ось ОХ?
Г.Я.Мякишев, Б.Б.Буховцев, Н.Н.Сотский, Физика 10 класс
Полный список тем по физике, календарный план по всем предметам согласно школьной программы, домашнее задание, курсы и задание по физике для 10 класса