ИЗМЕРЕНИЕ ДИЭЛЕКТРИЧЕСКОЙ ПРОНИЦАЕМОСТИ СТЕКЛОСОТОПЛАСТА В СВОБОДНОМ ПРОСТРАНСТВЕ
Рассматривается измерения диэлектрической проницаемости стеклосотопласта в свободном пространстве. По измеренному комплексному коэффициенту прохождения образца стеклосотопласта вычисляется его диэлектрическая проницаемость. Проводится оценка влияния переотражений между образцом и близко расположенной приемной антенной. Также сравниваются результаты измерений в свободном пространстве с результатами измерений волноводным методом.
Среди приоритетных стратегических направлений развития материалов и технологий в статье [1] отмечена разработка полимерных композиционных материалов. Среди задач стратегии развития композиционных и функциональных материалов [2] отмечены компьютерные методы моделирования структуры и свойств материалов при их создании и работе в конструкции. Одной из таких задач является создание материалов для стенок обтекателей и электродинамический расчет таких стенок, например, в работе [3] приведен алгоритм расчета антенного обтекателя в приближении физической оптики. С точки зрения весовых характеристик, широкополосности и широкоугольности работы преимущество имеет стенка обтекателя трехслойной конструкции. Она представляет собой структуру, состоящую из двух тонких обшивок на основе стеклопластика и расположенного между ними облегченного слоя на основе стеклосотопласта. Современная технология изготовления трехслойной структуры [4] позволяет применить бесклеевой изготовления с использованием препрегов, что улучшает радиотехнические характеристики структуры за счет отсутствия клеевого слоя. В такой структуре обшивки из стеклопластика обеспечивают прочность при растяжении и изгибе [5–8], в том числе при высоких температурах [9], а стеклосотопласт обеспечивает прочность при сжатии
Объяснение:
Сложность расчета такой стенки связана с тем, что – в отличие от других материалов стенки обтекателя – сотопласт представляет собой гетерогенную анизотропную структуру и его эффективная (с точки зрения прохождения электромагнитной волны через слой) диэлектрическая проницаемость зависит от направления падения электромагнитной волны на поверхность слоя сотопласта и поляризации вектора напряженности электрического поля (Е) относительно плоскости падения и плоскости склеивания сот. Поэтому для проектирования стенки обтекателя трехслойной конструкции, обеспечивающего при работе совместно с антенной требуемую диаграмму направленности, необходима информация об эффективной диэлектрической проницаемости сотопласта при различных направлениях облучения и поляризации. В работе [11] приведены результаты исследования диэлектрической проницаемости сотопласта ССП-1-4,2 на частоте 3 ГГц (длина волны 10 см) волноводным методом. Однако при относительной простоте и небольших размерах образцов для испытаний возникают следующие проблемы:
Физические явления окружают нас все время. В каком-то смысле, всё, что мы видим - это физические явления :) Но, строго говоря, их делят на несколько видов:
· механические
· звуковые
· тепловые
· оптические
· электрические
· магнитные
Пример механических явлений - это взаимодействия каких-то тел, например мяча и пола, когда мяч отскакивает при ударе. Вращение Земли - тоже механическое явление.
Звуковые явления - это распространение звука в какой-то среде, например в воздухе или в воде. К примеру, эхо, звук пролетающего самолета, "песни" китов.
Оптические явления - всё, что связано со светом. Преломление света в призме, отражения света в воде или зеркале.
Тепловые явления связаны с тем, что различные тела меняют свою температуру и физическое / агрегатное состояние: лёд плавится и превращается в воду, вода испаряется и превращается в пар.
Электрические явления связаны с возникновением электрических зарядов. Например, когда электризуется одежда или другие ткани. Или во время грозы появляется молния.
Магнитные явления связаны с электрическими, но касаются взаимодействия магнитных полей. Например, работа компаса, северное сияние, притяжение двух магнитов друг к другу.