Из формулы потенциальной энергии видно, что нулевой уровень её будет только в одной точке с координатами (0;0;0). чем дальше частица от этой точки, тем выше её потенциальная энергия. ещё одно замечание связано с тем, что работа силы поля равна разности потенциальных энергий в конце и начале пути. теперь можно подставить значения координат точек и посчитать потенциальную энергию двух этих положений U1=18; U2=18; => работа на данном пути равна нулю. это полно представить так, что вокруг точки (0;0;0) есть области с одинаковыми уровнями энергии, если бы в формуле энергии небыло бы двойки перед х^2 то эта область имела бы форму сферы, а так она будет иметь такую каплевидную фору симметричную относительно оси Ох. эта область как раз будет характеризоваться тем, что работа потенциальной силы в этой области будет равна нулю
При прохождении электрического тока по проводнику количество теплоты, выделяемое в проводнике, прямо пропорционально квадрату тока, сопротивлению проводника и времени, в течение которого электрический ток протекал по проводнику. это положение называется законом ленца - джоуля. если обозначить количество теплоты, создаваемое током, буквой q (дж), ток, протекающий по проводнику - i, сопротивление проводника - r и время, в течение которого ток протекал по проводнику - t, то закону ленца - джоуля можно придать следующее выражение: q = i2rt. так как i = u/r и r = u/i, то q = (u2/r) t = uit.