Темпы роста японской экономики были одними из самых высоких во второй половине XX в. В стране в значительной степени осуществлена качественная перестройка экономики. Япония находится на постиндустриальном этапе развития, для которого характерна высокоразвитая промышленность, но ведущей сферой является непроизводственный сектор (сфера услуг, финансы).
Хотя Япония бедна природными ресурсами и импортирует сырье для большинства отраслей промышленности, по выпуску продукции многих отраслей она занимает 1 -2 место в мире. Промышленность в основном концентрируется в пределах тихоокеанского промышленного пояса.
Электроэнергетика в основном использует импортное сырье. В структуре сырьевой базы лидирует нефть, растет доля природного газа, гидроэнергетики и атомной энергетики, сокращается доля угля.
В электроэнергетике 60 % мощности приходится на ТЭС и 28 % — на АЭС.
ГЭС располагаются каскадами на горных реках. По выработке гидроэлектроэнергии Япония занимает 5 место в мире. В Японии, бедной ресурсами, активно ведутся разработки альтернативных источников энергии.
Черная металлургия. По объему выплавки стали страна занимает I место в мире. Доля Японии на мировом рынке черной металлургии — 23 %.
Крупнейшие центры, работающие ныне почти полностью на привозном сырье и топливе, расположены вблизи Осаки, Токио, в Фудзияма.
Цветная металлургия. Вследствие вредного влияния на окружающую среду сокращается первичная выплавка цветных металлов, но заводы расположены во всех крупных промышленных центрах.
Машиностроение. Дает 40 % продукции промышленного производства. Главными подотраслями среди множества развитых в Японии являются электроника и электротехника, радиопромышленность и транспортное машиностроение.
Япония прочно занимает I место в мире по судостроению, специализируется на строительстве крупнотоннажных танкеров и сухогрузов. Главные центры судостроения и судоремонта находятся в крупнейших портах (Йокогана, Нагосаки)
Новый виток в развитии картографии появился благодаря возможности местности, а позже и спутниковых систем. Наконец-то люди смогли решить тысячелетнюю задачу — создание идеального объекта ориентирования с максимальной точностью. Но даже тогда все проблемы не закончились.
Требовалось создание инструмента, который бы мог обрабатывать не только спутниковые снимки, но и информацию, которую, например, могут знать только местные жители. Так появились сервисы OpenStreetMap (OSM) и Wikimapia. Давайте более подробно обсудим то, как оцифровывается и становится картой реальный мир.
Фиксация местности
Первые карты появились тысячи лет назад. Конечно, это были непривычные в современном понимании карты, а скорее схемы, где прямыми и волнистыми линиями изображались изгибы рек морей, вершины гор и т.д. Недавно была найдена похожая схематическая карта районов Мадрида возрастом около 14 тысяч лет.
Позже были изобретены компас, телескоп, секстант и другие навигационные приборы, которые в период Великих географических открытий позволили масштабно изучить и нанести на бумагу тысячи географических объектов. Ярким примером этому служит карта Хуана де ла Коса, датированная 1500 годом. Именно середину тысячелетия принято считать расцветом картографии. Примерно в то время были изобретены основные картографические проекции, математические методы и принципы построения карт. Но все равно этого было недостаточно, чтобы создавать точные карты.
Далее идет этап создания рельефа местности. Для этого используются контурно-комбинированный и стереотопографический метод. При первом с геодезических приборов определяются основные высоты местности и затем на снимки наносятся горизонтали географических объектов. При втором методе два снимка накладываются друг на друга таким образом, чтобы получить подобие трехмерного изображения местности, а далее с приборов определяются контрольные высоты.
Появление аэрофотосъемки в XX веке позволило создавать более точные карты и учитывать рельеф местности
Спутниковая съемка
Сейчас наземной- и аэросъемкой занимаются все меньше, а на смену им пришли спутники дистанционного зондирования Земли. Спутниковые снимки открывают перед современными картографами намного более широкий спектр возможностей. Помимо данных о рельефе снимки спутников строить стереоизображения, создавать цифровые модели местности, определять смещение и деформацию объектов и так далее.
Спутники условно можно разделить на обычные и сверхвысокого разрешения. Естественно для фотографирования тайги или океана не нужны очень качественные фотографии, а для определенных территорий или задач спутники, фотографирующие в сверхвысоком разрешении просто необходимы. К таким спутникам, например, относятся модели Landsat и Sentinel, отвечающие за глобальное изучение состояния окружающей среды и безопасности с точностью пространственного разрешения до 10 метров.
Эпоха спутниковой съемки довела точность карт до разрешения 10 метров
Спутники регулярно передают терабайты данных в нескольких спектрах: видимом, инфракрасном и некоторых других. Информация из невидимого для глаза человека спектра позволяет отслеживать изменение рельефа, состояние атмосферы, океана, появление пожаров и даже рост сельскохозяйственных культур.
Для определения относительного возраста слоистых осадочных и пирокластических пород , а также вулканических пород (лав) широко применяется принцип последовательности напластования [т. н. закон Стенсена (Стено)]. Согласно этому принципу, каждый вышележащий пласт (при ненарушенной последовательности залегания слоистых горных пород ) моложе нижележащего. Относительный возраст интрузивных пород и других неслоистых геологических образований определяется по соотношению с толщами слоистых горных пород . Послойное расчленение геологического разреза, т. е. установление последовательности напластования слагающих его пород, составляет стратиграфию данного района. Для сравнения стратиграфии удалённых друг от друга территорий (районов, стран, материков) и установления в них толщ близкого возраста используется палеонтологический метод, основанный на изучении захороненных в пластах горных пород окаменевших остатков вымерших животных и растений (морских раковин, отпечатков листьев и т.д.). Сопоставление окаменелостей различных пластов позволило установить процесс необратимого развития органического мира и выделить в геологической истории Земли ряд этапов со свойственным каждому из них комплексом животных и растений. Исходя из этого, сходство флоры и фауны в пластах осадочных пород может свидетельствовать об одновременности образования этих пластов, т. е. об их одновозрастности. Впервые этот метод определения относительного возраста горных пород был применен в начале 19 в. У. Смитом в Великобритании и Ж. Кювье во Франции. Тогда ему не было дано надёжного теоретического обоснования. Кювье объяснял различия в составе комплексов ископаемых, встречаемых в пластах горных пород , вымиранием организмов в результате внезапных геологических катастроф и появлением затем новых их комплексов. Последователи Кювье, в том числе французский геолог и палеонтолог А. Д’ Орбиньи, предполагали, что смена органического мира Земли после каждой катастрофы связана с «творческими актами божества». Учение Ч. Лайеля о медленных естественных преобразованиях лика Земли и классические труды Ч. Дарвина и В. О. Ковалевского об эволюционном развитии органического мира дали материалистическое обоснование палеонтологическому методу. В результате трудов нескольких поколений геологов была установлена общая последовательность накопления слоев земной коры, получившая название стратиграфической шкалы. Верхняя часть её (фанерозой) составлена при палеонтологического метода с большой тщательностью. Для нижележащего отрезка шкалы (докембрий), соответствующего огромной по мощности толще пород, палеонтологический метод имеет ограниченное применение из-за плохой сохранности или отсутствия окаменелостей. Вследствие этого нижняя - докембрийская - часть стратиграфической шкалы расчленена менее детально. По степени метаморфизма горных пород и др. признакам докембрий делится на архей (или археозой) и протерозой.