История создания тригонометрии плотно связанна с космосом, а точнее с решением астрономических задач. Изначально на первых этапах развития этого направление в математики были положены в основу примитивные соотношение длин и сторон треугольника. Но со временем она развивалось и превратилось в сегодняшний вариант этого раздела. Сейчас это небольшой раздел геометрии, который включают в себя лишь некоторые программы обучения. Если взять современную математику, то тригонометрия это узкий раздел, изучающий взаимоотношения углов треугольника.
Изначально этот раздел не имел общего названия, а все древние математики называли тригонометрию по-своему. Впервые понятия «тригонометрия» было обнаружено в 1505 году в научной работе немецкого ученого Питискуса. Сам термин был родом из древнегреческого языка и при дословном переводе означал «измеряю углы треугольника». Речь об измерении, здесь употребляется в переносном смысле, то есть не буквальное измерение углов, а нахождение их при формул и известных элементов.
Когда в руках историков оказались древние математические рукописи и манускрипты они смогли сделать несколько заключений. Они пришли к выводу, что основателем тригонометрии был древнегреческий математик и астроном Гипарх. В ходе своих научных работ он стал задумываться о новаторских решения геометрического треугольника. Гипарх был удивительным ученым своего времени, так как он смог создать начальный уровень современной тригонометрии, живя в втором веке до нашей эры. Также в это время жил и творил Пифагор, который смог создать правильное соотношения сторон прямоугольного треугольника, то есть теорему Пифагора.
Значительный вклад в тригонометрию внесли молодые ученые из Индии, но эти открытия были сделаны уже в средневековые времена. Также в эпоху средневековья были сделаны множества различных открытий и других направлениях науки, культуры и общества.
Расстояние от точки до плоскости – длина перпендикуляра, опущенного из точки на эту плоскость. Пусть перпендикуляр из В будет ВС, из М - МН. (рис.1 вложения) А, Н и С - лежат на одной прямой АС, т.к. являются точками проекции АВ на плоскость. Соединим А, С и В. ∆ АВС и ∆ АМН - прямоугольные и подобны т.к.имеют общий острый угол ( признак подобия прямоугольных треугольников). Примем АМ=2а, АВ=2а+3а=5а. Тогда k=MH:AB=2/5⇒ 5 MH=2 AB⇒ 5 MH=2•12,5=25 м MH=5 м
В условии не указано, что АВ - наклонная. Поэтому возможно, что АВ - перпендикуляр к плоскости. (рис.2 вложения) Тогда АВ=12,5, а расстояние от плоскости до точки М=AM. АВ=12,5=5 а⇒ а=12,5:5=2,5 АМ=2•2,5=5 м
В треугольнике ABC угол C 90 градусов угол A 30 градусов AB равен 36 корень из 3 найти высоту CHДан прямоугольный треугольник АСВ.Угол А = 30 гр.Катет, лежащий напротив угла в 30 гр, равен половине гипотенузы.ВС = 1/2 АВВС=18 корней из 3 AC^2 = AB^2 - BC^2AC = 54 Расмотрим тругольник СНА - прямоугольный. Катет, лежащий напротив угла в 30 гр, равен половине гипотенузы.СН = 1/2 АССН = 27 В прямоугольном треугольнике катет, лежащий против угла в 30 градусов, равен половине гипотенузы. Значит СВ-18 корней из 3. А из теоремы Пифагора АС=54. А из треугольника АСН гипотенуза = 54, а катет против угла 30- СН = 27.
Объяснение:
Доклад История тригонометрии кратко сообщение
История создания тригонометрии плотно связанна с космосом, а точнее с решением астрономических задач. Изначально на первых этапах развития этого направление в математики были положены в основу примитивные соотношение длин и сторон треугольника. Но со временем она развивалось и превратилось в сегодняшний вариант этого раздела. Сейчас это небольшой раздел геометрии, который включают в себя лишь некоторые программы обучения. Если взять современную математику, то тригонометрия это узкий раздел, изучающий взаимоотношения углов треугольника.
Изначально этот раздел не имел общего названия, а все древние математики называли тригонометрию по-своему. Впервые понятия «тригонометрия» было обнаружено в 1505 году в научной работе немецкого ученого Питискуса. Сам термин был родом из древнегреческого языка и при дословном переводе означал «измеряю углы треугольника». Речь об измерении, здесь употребляется в переносном смысле, то есть не буквальное измерение углов, а нахождение их при формул и известных элементов.
Когда в руках историков оказались древние математические рукописи и манускрипты они смогли сделать несколько заключений. Они пришли к выводу, что основателем тригонометрии был древнегреческий математик и астроном Гипарх. В ходе своих научных работ он стал задумываться о новаторских решения геометрического треугольника. Гипарх был удивительным ученым своего времени, так как он смог создать начальный уровень современной тригонометрии, живя в втором веке до нашей эры. Также в это время жил и творил Пифагор, который смог создать правильное соотношения сторон прямоугольного треугольника, то есть теорему Пифагора.
Значительный вклад в тригонометрию внесли молодые ученые из Индии, но эти открытия были сделаны уже в средневековые времена. Также в эпоху средневековья были сделаны множества различных открытий и других направлениях науки, культуры и общества.