Применим теорему Пифагора
Поскольку высота треугольника делит основание пополам, то длина половины основания будет равна 12 / 2 = 6см .
Высота с половиной основания и стороной равнобедренного треугольника образует прямоугольный треугольник. Соответственно, высота основания будет равна:
h = √ 102 - 62 = √64 = 8 см
Площадь равнобедренного треугольника будет равна площади двух прямоугольных треугольников, образованных боковыми сторонами, высотой и половинами основания равнобедренного треугольника. Применив формулу площади прямоугольного треугольника, получим:
S = 6 * 8 / 2 = 24 см2
Поскольку прямоугольных треугольников два, то общая площадь равнобедренного треугольника составит:
24* 2 = 48см2 .
можно площадь найти так
S=(1/2)ah=(1/2)*12*8=48 см2 a- основание h-высота
ответ: Площадь равнобедренного треугольника составляет 48 см2
При этом образуются две пары вертикальных углов, которые равны между собой.
Т.к. сумма углов, данных в задаче, равна 300 градусов, эти углы не смежные, а вертикальные. Каждый из них равен
300°:2=150°
Смежные с ними углы равные между собой вертикальные, и равны по
180°-150°=30°
ответ: Два вертикальных угла по 150°, два других - по 30°
Сумма всех четырех углов =2*150°+2*30°=360° - такова сумма всех углов, образовавшихся с вершиной в точке пересечения двух прямых.