т.к. АВ=2ВН (по усл.)
<A=30° по следствию,
Исходя из теоремы: если в прямоугольном треугольнике угол(<А),лежащий против катета = 30°,этот катет(ВН) в 2 раза меньше гипотенузы(ВА).
Т.к. трапеция равнобедренная,углы каждого из оснований попарно равны, т.е. <А=<D(30°)
<B=<C (150°)
* * * * * * * * * * * * * * * * * * * * * * * * * *
В равнобедренной трапеции диагональ является биссектрисой. Найдите площадь трапеции, если боковая сторона - 25 см, основание 39 см
ответ: 768 см².
Объяснение: Пусть ABCD равнобедренная трапеция
AD и BC основания трапеции ( AD || BC ) AD =39 см ,
ВA = CD =25 см и ∠ BAC = ∠ DAC .
S(ABCD) = h*(AD+BC)/2 -?
--------------------------------------
∠ BCA= ∠ DAC как накрест лежащие углы ( BC || AD , CA секущая) ,
следовательно ∠ BCA= ∠ DAC =∠ BAC , т.е. ΔBAC равнобедренный
BA = BC =25 см получили BA = CD =25 см .
Проведем BB₁ ⊥ AD и CC₁ ⊥ AD . BCC₁B₁ _прямоугольник BB₁ =CC₁
B₁C₁ = BC =25 см ; Δ BB₁A = Δ CC₁D(гипотен. BA= CD и катеты BB₁ =CC₁).
AB₁ =(AD - BC)/2 =(39 - 25)/2 см=7 см .
Из Δ BB₁A по теореме Пифагора:
BB₁ =√(BA² -AB₁² ) =√(25² -7)² =√(625 -49) =√576=24 (см) .
* * * h=√(25²-7)² =√(25 -7)(25 +7) =√(18*32) √(9*2*16*2)=3*2*4=24 * * *
S(ABCD) = h*(AD+BC)/2 =24(39+25)/2 =24*32 = 768 (см²).
ответ Если BH меньше АВ в 2 раза, значит она лежит на против угла в 30°.Угол АНВ прямой, значит равен 90 градусов. Угол ABH=180-(90+30)=60 Боковые углы в сумме дают 180°, значит 180-30=150-это углы АВС и ВСD потому что углы при основании равны, значит углы BAD и CDA равны 30