Объяснение:
1) угол NOM = углу FOE как вертикальные
по условию нам дано EO = ON и угол ONM = углу OEF
значит треугольники MON и EOF равны по второму признаку равенства треугольников
2) AB - общая сторона для треугольников ADB и ABC
и по условию у них CB=BD и равны углы ABD и CBA
значит треугольники ADB и CBA равны по первому признаку равенства треугольников
3) NK - общая сторона для треугольников NKP и NKM
также по условию MK=NP и MN=KP значит треугольники NKP и NKM по третьему признаку равенство треугольников
Відповідь:
Из условия известно, что периметр равнобедренного треугольника равен 48 см. Так же известно, что его боковая сторона в 1.5 раза больше основания. Для того, чтобы вычислить стороны треугольника составим и решим уравнение.
Давай обозначим с переменной x см длину основания, а с 1.5x см длину боковой стороны.
Для нахождения периметра равнобедренного треугольника:
P = 2a + b;
2 * 1.5x + x = 48;
3x + x = 48;
4x = 48;
x = 48 : 4;
x = 12 см длина основания, тогда 1,5 * 12 = 18 см основание треугольника.
Вот :3
Пояснення:
Для удобства примем куб с ребром 2 (чтобы пополам делился).
а) прямые ВВ1 и ВК лежат в одной плоскости и имеют общую вершину В.
На ребре ВВ1 возьмём его середину - точку В2.
Тогда В2КВ - прямоугольный треугольник.
В2К = √(2² + 1²) = √5.
Тангенс искомого угла равен √5/1 = √5.
Угол равен arc tg(√5) = 65,90516 градуса.
б) прямые А1С1 и В1К скрещиваюшиеся.
Перенесём В1К точкой В1 в точку С1 и получим треугольник, в котором заданные прямые имеют общую точку и образуют искомый угол.
Это треугольник А1С1К2. Находим длины его сторон.
А1С1 = 2√2 = √8,
С1К2 = В1К = √6 ,
А1К2 = √(1² + 3²) = √10.
Косинус угла в точке С1 равен:
cos C1 = (8 + 6 - 10)/(2*√8*√6) = 4/(2√48) = 1/(2√3).
Угол равен arc cos (1/(2√3)) = 73,221 градуса.