М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Pingvinchikc
Pingvinchikc
27.04.2021 14:47 •  Геометрия

Помготи сколько параллелограмов можно получить из двух разносторионих треугольников и почему? ​

👇
Открыть все ответы
Ответ:
Foxxx11
Foxxx11
27.04.2021

Треугольник АВС равнобедренный с основанием АС. Высоту этого треугольника ВН найдем через площадь: h= 2S/а, где S - площадь, а - сторона, к которой проведена высота. ВН = 2*48/12 = 8 см. Боковые стороны АВ и ВС равны по Пифагору √(ВН²+АН²) = √(8²+6²) =10 см.

Опустим перпендикуляры из точек А, Н и С на плоскость β. Эти перпендикуляры АЕ, НD и СF равны расстоянию от прямой АС до плоскости β (5 см - дано) в силу параллельности плоскости β прямой АС.

Угол наклона боковой стороны АВ треугольника к плоскости β - это угол наклонной АВ к плоскости, равный углу между наклонной  АВ и ее проекцией ВЕ на эту плоскость.

В прямоугольном треугольнике АВЕ гипотенуза AВ=10 см, а катет АЕ=5 см. Синус угла АВЕ равен отношению противолежащего катета к гипотенузе, то есть Sina = 5/10 = 1/2, а сам угол равен 30°.

Так как треугольники АВЕ и СВF равны по катету и гипотенузе, то и углы наклона сторон АВ и СВ к плоскости β равны.

ответ: искомый угол α = 30°.


Через вершину в равнобедренного треугольника авс проведена плоскость, параллельная основанию ас. най
4,7(49 оценок)
Ответ:
12235110spl
12235110spl
27.04.2021

Дана правильная четырехугольная пирамида SАВСД, длина бокового ребра которой равна L = 3 см, а стороны основания a =  2√3 см.

Проведём осевое сечение через 2 боковых ребра.

В сечении равнобедренный треугольник АSС с боковыми сторонами L = 3 см и основанием - диагональ квадрата основания d = a√2 = (2√3)*√3 = 2√6 см.

Высота Н пирамиды равна:

Н = √(L² - (d/2)²) = √(9 - 6) = √3 см.

Перпендикуляр из центра основания пирамиды на боковое ребро (пусть это ОК) - это высота треугольника ОSС, она равна (√3*√6)/3 = √2 см.

Искомый угол лежит в перпендикулярном сечении к боковому ребру.

В сечении - треугольник ВКД.

Апофема А = √(3² - (2√3/2)²) = √(9 - 6) = √3 см.

КД - высота, она равна 2S/L = (2*((1/2)*2√3*√6))/3 = 2√2 см.

То есть она как гипотенуза треугольника ОКД в 2 раза больше катета ОК, а угол КДО равен 30 градусов.

Отсюда искомый угол ВКД равен 2*60 = 120 градусов.

4,5(25 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ