Так как по условию xm+yn=5n, тоxm =(5-y)n если x не равно 0, то разделив левую и правую части уравнения на x, получим m =((5-y)/x) n, где ((5-y)/x) какое-то число.
По условию коллинеарности:Два вектора a и b коллинеарны, если существует число не равное нулю n такое, что a = n · b Следовательно, если a и b не коллинеарны то такого числа не существует. А в нашем примере такое число есть (при x не равном 0). Следовательно если x не равно 0, то векторы коллинеарны. А так как по условию они не коллинеарны, то x = 0. Тогда и y = 0. ответ: x = 0 и y = 0
А)r=ab/2=12 см б) проведем высоту cl , из прямоугольного треугольника cld ld²=cd²-ab²=25²-24²=49 ld=7 если в четырехугольник вписана окружность,то сумма его противоположных сторон равна . ab+cd=bc+ad bc+ad=49 ad=bc+ld bc+bc+ld=49 2bc+7=49 bc=21 ad=49-21=28 в)проведем радиус qf ,точка f лежит на прямой cd qf является высотой т. к. касательная к окружности перпендикулярна радиусу. отметим на прямых bc и ad точки к и м ,так что бы км являлось диаметром и была параллельна ab,далее из свойств прямоугольной трапеции ,В которую вписана окружность kc=cf=bc-r=21-12=9 ed=ef=ad-r=28-12=16 qf является высотой треугольника cdq, в прямоугольном треугольнике квадрат высоты равен произведению отрезков ,на которые высота делит гипотенузу qf²=16*9 12²=16*9 144=144 следовательно треугольник cdq прямоугольный
если x не равно 0, то разделив левую и правую части уравнения на x, получим
m =((5-y)/x) n, где ((5-y)/x) какое-то число.
По условию коллинеарности:Два вектора a и b коллинеарны, если существует число не равное нулю n такое, что a = n · b
Следовательно, если a и b не коллинеарны то такого числа не существует.
А в нашем примере такое число есть (при x не равном 0).
Следовательно если x не равно 0, то векторы коллинеарны.
А так как по условию они не коллинеарны, то x = 0. Тогда и y = 0.
ответ: x = 0 и y = 0