Сумма углов в треугольнике 180°
∠DFE = 180° - ∠EDF - ∠DEF = 180° - 60° - 90° = 30°
∠DFM = ∠F - ∠DFE = 90° - 30° = 60°
∠M = 90°
∠MDF = ∠D - ∠FDE = 90° - 60°
Пересечение двух сфер Линия пересечения двух сфер есть окружность .
Объяснение:
Пусть O1 и O2 – центры сфер и A – их точка пересечения. Проведем через точку A плоскость α, перпендикулярную прямой O1O2.
Обозначим через B точку пересечения плоскости α с прямой O1O2. По теореме сечение шара плоскостью плоскость α пересекает обе сферы по окружности K с центром B, проходящей через точку A. Таким образом, окружность K принадлежит пересечению сфер.
Докажем, что сферы не имеют других точек пересечения, кроме точек окружности K. Допустим, точка X пересечения сфер не лежит на окружности K. Проведем плоскость через точку X и прямую O1O2 . Об этом говорит сайт https://intellect.icu . Она пересечет сферы по окружностям с центрами O1 и O2. Эти окружности пересекаются в двух точках, принадлежащих окружности K, да еще в точке X. Но две окружности не могут иметь больше двух точек пересечения.
8,37 см; 12,56 см; 16,75 см
Объяснение:
1) Угол, который противолежит стороне 6√3, равен:
180- 40-80= 60°.
Это значит, что центральный угол, который опирается на эту сторону, равен:
60·2=120°;
следовательно, хорда 6√3 равна произведению радиуса окружности на √3:
6√3 = R·√3,
откуда радиус окружности R = 6 см.
2) Длина окружности:
π·2R = 12·3,14 = 37,68 см.
3) Находим длины дуг:
37,68:360 *(40*2) = 8,37 см;
37,68:360 *(60*2) = 12,56 см;
37,68:360 *(80*2) = 16,75 см;
ИТОГО: 8,37 + 12,56 + 16,75 = 37,68 см
ПРИМЕЧАНИЕ.
Углы умножаем на 2, так как вписанный угол равен 1/2 дуги, на которую опирается.
33
Объяснение:
класс