В параллелепипеде 6 граней, - по две противоположных, которые попарно равны между собой. Естественно, их диагонали также равны. В каждой вершине параллелепипеда сходятся смежные стороны трех граней, и их диагонали образуют треугольник. (см. рисунок вложения) В данном случае диагонали равны 30, 40 и 70 см. По теореме о неравенстве треугольников: длина любой стороны треугольника меньше суммы длин двух других сторон. Здесь имеем "треугольник" и три длины, и 70=30+40. Тогда меньшие стороны "лягут" на большую, и треугольник не получится, как и параллелепипед с такими диагоналями граней. Не могут диагонали трех граней прямоугольного параллелепипеда иметь длины 30 см, 40 см и 70 см.
Пусть в равнобедренный прямоугольный треугольник ABC с прямым углом C вписана окружность с центром O. Обозначим точки касания окружности со сторонами AC,AB и BC за D,E,F соответственно. По свойству вписанной окружности, CD=CF, AD=AE, BE=BF. Заметим, что отрезок CD равен r, так как четырехугольник CDOF - квадрат (в нём две соседние стороны равны r, а все четыре угла прямые). Обозначим отрезок AD за x, тогда стороны треугольника равны r+x, r+x и 2x. Мы знаем, что в равнобедренном прямоугольном треугольнике гипотенуза в √2 раз больше катета (это очевидно следует из теоремы Пифагора), значит, имеет место равенство √2(r+x)=2x, откуда (2-√2)x=√2r, то есть x=√2/(2-√2)*r=1/(√2-1)*r=(√2+1)*r. Значит, катет треугольника равен (√2+2)*r, а гипотенуза равна 2*(√2+1)*r.
Нет
Объяснение:
Они имеют одинаковую величину, общая сторона у смежных