Катеты данного прямоугольного треугольника равны 2√10 см и 6√10 см.
Объяснение:
Рисунок прилагается.
Дано: ABC прямоугольный треугольник, ∠ С = 90°, CH- высота, AH = 2 см - проекция катета AC на гипотенузу, BH = 18 см - проекция катета BC на гипотенузу.
Найти катеты AC и BC.
Обозначим для удобства катеты AC = a, BC = b, проекции катетов AH = a₁, BH = b₁, высоту CH = h.
Высота в прямоугольном треугольнике, опущенная на гипотенузу, равна среднему пропорциональному проекций катетов на гипотенузу.
h² = a₁*b₁ = 2 * 18 = 36; h = 6
⇒ Высота треугольника, опущенная на гипотенузу CH = h = 6 см.
Из прямоугольного ΔACH по теореме Пифагора:
a² = h² + a₁² = 6² + 2² = 36 + 4 = 40; a = √40 = 2√10
Катет AC = 2√10 см/
Из прямоугольного ΔBCH по теореме Пифагора:
b² = h² + b₁² = 6² + 18² = 36 + 324 = 360; b = √360 = 6√10
Катет BC = 6√10 см.
Катеты данного прямоугольного треугольника равны 2√10 см и 6√10 см.
BC = CM = LB = BN и BS = SA = AN = ND = DG, т.к трапеция равнобоковая и отрезки касательных, проведённые из одной точки равны.
Опустим два перпендикуляра к большему основанию AD. Обозначим их за BE т FC. Внутри трапеции образовался прямоугольник BEFC => BC = EF = 2m. Тогда AE + FD = 2n - 2m.
AB = CD
BE = CF
Угол AEB = углу DFC = 90°
Значит, треугольник равны по катеты и гипотенузе.
Из равенства треугольников => AE = FD. Значит, AE = FD = 1/2(AE + FD) = 1/2•(2n - 2m) = n - m.
По теореме Пифагора:
BE = √(m + n)² - (n - m)² = √m² + 2mn + n² - n² + 2mn - m² = √4mn = 2√mn.
Значит, высота трапеции равна 2√mn.
Площадь S трапеции равна:
S = 1/2(BC + AD)•EB
S = (m + n)•2√mn.