Берешь угол. Вершина угла - точка А. На одном из лучей откладываешь длину гипотенузы. Получаешь точку В. А затем из точки В опускаешь перпендикуляр на другой луч. Получаешь точку С - вершину прямого угла. Чтобы опустить перпендикуляр из точки (номер 1, в нашем случае - это точка B) на прямую, надо поставить острие циркуля в эту точку и произвольным одинаковым раствором циркуля (явно большим расстояния от точки до прямой) сделать две засечки на этой прямой, получишь две точки пересечения (номер 2 и номер 3), а затем, ставя поочередно в эти точки острие циркуля одинаковым раствором циркуля (не обязательно равным первоначальному, но явно большему половины длины отрезка между точками 2 и 3, а лучше просто не менять раствор циркуля) провести две дуги до их пересечения на другой стороне прямой (а если поменять раствор циркуля, то можно провести две дуги до пересечения и на той же стороне прямой, где была точка номер 1). Получишь четвертую точку - точку пересечения дуг. Соедини первую точку с четвертой до пересечения с прямой, если они по разные стороны от прямой, или продли линию до пересечения с прямой, если точки 1 и 4 находятся по одну сторону от прямой. Эта линия и будет перпендикуляром, опущенным из первой точки на данную прямую. А точка пересечения перпендикуляра с прямой и будет точкой С нашего треугольника.
Дано:
NK=KL=LM
уголLNM=30°
Найти: уголК; уголL; уголM; уголN
уголLNM=уголKLN=30°(как накрест лежащие при KL||NM и секущей NL)
Т.к ∆NKL- равнобедренный(по условию), то уголKLN= уголKNL= 30°
Значит, уголN= уголKNL+уголLNM=30°+30°=60°
По свойству равнобедренной трапеции уголМ=уголN=60°
По свойству трапеции:
уголN+уголК=180°
уголК=180°-уголN=180°-60°= 120°; и
уголМ+уголL=180°
уголL=180°-уголМ=180°-60°= 120°
УголК=уголL(как углы при основании равнобедренной трапеции)
ответ: уголК=120°; уголL=120°; уголМ=60°; уголN=60°